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PREFACE

A review of the results of a joint NASA/USAF program to develop and flight

test winglets on a KC-135 aircraft was held at the Dryden Flight Research

Center on September 16, 1981. This publication is a compilation of the results
presented.
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KC-135 WINGLET PROGRAM OVERVIEW

Marvin R. Barber* and David Selegan**

SUMMARY

A joint NASA/USAF program was conducted to accomplish the following

objectives:

I. Evaluate the benefits that could be achieved from the application of

winglets to KC-135 aircraft.

2. Determine the ability of wind tunnel tests and analytical analysis to

predict winglet characteristics.

The program included wind-tunnel development of a test winglet configura-

tion; analytical predictions of the changes to the aircraft resulting from the

application of the test winglet; and finally, flight tests of the developed

configuration.

Pressure distribution, loads, stability and control, buffet, fuel mileage,

and flutter data were obtained to fulfill the objectives of the program.

INTRODUCTION

This paper provides an overview of a joint NASA/USAF effort that resulted

in full-scale flight tests of winglets on a KC-135 aircraft. Winglet evolution

is traced from concept, through wind-tunnel testing and full-scale flight tests.

The details of the flight tests are emphasized in this paper and serve as

an introduction for the flight test result papers that follow in this proceeding.

SYMBOLS

L

D

W

6

M

hp

C t

CRT

Lift Force - ibs

Drag Force - ibs

Gross Weight - ibs

Ambient Pressure in Standard Atmospheres

Mach Number

Pressure Altitude - ft.

Wing Tip Chord

Cathode Ray Tube

*NASA Dryden Flight Research Center

**USAF Wright Aeronautical Laboratory



NRT

Keas

Normal Rated Thrust

Knots Equivalent Airspeed - knots

CONCEPT

Winglets are small, nearly vertical aerodynamic surfaces which are designed
to be mountedat the tips of aircraft wings (see figure i). Winglets are
designed with the samecareful attention to airfoil shape and local flow condi-

tions as the wing itself. The primary component of the winglet configurations

is a large winglet mounted rearward above the wing tip. The "upper surface" of

this airfoil is the inboard surface. For some configurations an additional

small winglet, mounted forward, below the wing tip, is necessary. The "upper

surface" of the airfoil for this lower winglet is the outboard surface.

The winglets operate in the circulation field around the wing tip. Because

of the pressure differential between the wing surfaces at the tip, the air flow

tends to move outboard along the wing lower surface, around the tip, and inboard

along the wing upper surface. This wing-tip vortex produces cross flows at each

winglet. Thus the winglets produce large side forces even at low aircraft

angles of attack. Since the side force vectors are approximately perpendicular

to the local flow, the side forces produced by the winglets have forward (thrust)

components (figure I) which reduce the aircraft induced drag. This is the same

principle that enables a sailboat to travel upwind by tacking. For winglets to

be fully effective the side forces must be produced as efficiently as possible;

therefore, advanced aerodynamic airfoil shapes are used. The side force pro-

duced by the winglets, and therefore the thrust produced, is dependent upon the

strength of the circulation around the wing tip. Since the circulation strength

is a function of the lift loads near the wing tip, winglets are more effective

on those aircraft with higher wing loads near the tip.

The near vertical mounting of the winglets enables them to provide their

thrust with very little increase in wing root bending. This can be an important

design or retrofit consideration.

Theoretical calculations indicate that the aerodynamic benefit would be the

same for a given size winglet in either the upper or lower position. However,

ground clearance of low-wing jet transports limits the span of the lower winglet,

and interference with the upper winglet flow limits the chord length of the

lower winglet. Thus, from a practical standpoint for low-wing aircraft, the

lower winglet must be relatively small. As a result, for the jet transports

being discussed herein, the contributions of the lower winglet to the reduction

of drag were relatively small.

As indicated in figure i, the winglets tend to straighten the air flow

thus slightly reducing the wing-tip vortex strength. However, the trailing vor-

tex hazard still exists. The reduction is an indication of an increase in the

aircraft efficiency. Winglets are not designed to improve flight safety for

trailing aircraft, but to increase aerodynamic efficiency.



FLIGHTPROGRAMDEVELOPMENT

Program Inception and Motivation
The concept of winglets to reduce aircraft drag was developed by NASA/

Langley. An empirical investigation of winglets on a DC-10model was conducted
in the NASA/Langley8-foot transonic tunnel. Results of the investigation indi-
cated a decrease in induced drag of about 15 percent and an overall drag decrease
of about 5 percent. These preliminary results and fuel conservation interests

were the motivation for application to military vehicles. Subsequently, a Boeing

Company analysis of the effects of winglets on the 747 was correlated with wind

tunnel data and indicated a drag reduction of approximately 4 percent on the

full-scale 747 aircraft.

Based on these early results, a Memorandum of Understanding (MOU) for a

joint USAF/NASA Winglet Development Program was developed. Under this MOU,

NASA LaRC and the Flight Dynamics Laboratory coordinated the development of a

wind tunnel data base relative to the application of winglets to selected Air

Force aircraft.

The Boeing Company, under contract to the Air Force, performed an analyti-

cal investigation of winglet concepts for the KC-135 and C-141 aircraft and for

the purpose of recommending winglet configurations. The analysis addressed the

effect of winglets on vehicle aerodynamic characteristics and wing root bending

moments. The feasibility of winglets on KC-135 aircraft and wing tip winglets

interface moments were also addressed. This effort was supported by NASA/LaRC

through wind tunnel tests of selected configurations.

Wind tunnel tests of a NASA/Langley constructed semi-span KC-135 model with

winglets were conducted in the NASA/Langley 8-foot transonic tunnel. Results of

these tests indicated an 8 percent total drag reduction at cruise flight condi-

tions (M = 0.78, hp = 35,000 ft.).

Subsequently, a full span KC-135 model with winglets was tested in the

NASA/LaRC 8 foot transonic tunnel, indicating drag reductions of 6 percent at

cruise. This series included off-nominal conditions. Low speed investigations

of the winglets effects on the KC-135 with various flap and aileron configura-

tions were completed during the months of July and August 1976.

The results of the wind tunnel tests and anlytical studies are reported in

references 1 through II. In summary, these studies indicate that winglets

would reduce KC-135 aircraft drag by 6 to 8 percent. This reduction translated

into approximately 37 million gallons of fuel saved per year for the KC-135

fleet.

Based on these results, and the high priority fuel conservation effort

within the United States in this time period, the Air Force initiated an

Advanced Development Program to build and flight test a set of winglets on a

KC-135 aircraft. NASA was eager to participate in a flight test program to

obtain full-scale lift and drag data for comparison with the wind tunnel

results. Reynolds number effects on the winglets aerodynamic performance was the

primary concern in initiating flight and wind tunnel data comparisons. Both

agencies objectives, though different, were compatible to a joint program and

were formalized in another Memorandum of Understanding that formulated a flight

program.



Obviously, both the USAFand NASAwere interested in obtaining as much
information as possible from the flight program. However, the specific data
interests of each organization were slanted differently in someareas. A break-
downof the primary interest of each organization is provided in table I.

The responsibilities of the organizations participating in the joint pro-
gram are defined in figure 2. The program was under the overall managementof
the Flight DynamicsLaboratory. They provided the test aircraft, a serviceable
set of outer wing panels, and were technically and financially responsible for
contracting with the Boeing Military Airplane Companyfor the design, fabrica-
tion and ground test of a set of winglets and modified outer wing panels.

NASA/Drydenwas responsible for the flight phase of the program. They
instrumented the aircraft, and provided funds, manpowerand facilities required
for this portion of the program.

The Air Force Flight Test Center provided flight crew and engineering sup-
port to the flight test program. They were also responsible for all flight
flutter testing and were the onsite Air Force representative during flight
testing.

NASA/Langleyprovided facilities, personnel, and data processing as
required to support the winglet wind tunnel tests. They also provided tech-
nical support in the design of the flight winglet.

Boeing Military Airplane Companyaccomplished the design, fabrication, and
ground testing of the winglets and provided onsite engineering support during
the flight test phase.

The original flight program milestones are shownin figure 3. A contract

was awarded to The Boeing Military Airplane Company, Wichita, Kansas, in Sep-

tember 1977. The effort included the design, fabrication and ground testing of

a set of winglets and the modification of the outer wing panels to accept the

winglets. Preliminary and final design reviews were held at Boeing in Febru-

ary and June 1978, respectively.

In conjunction with the design effort, a low speed flutter test was con-

ducted in January 1978 in the Convair wind tunnel in San Diego. The test

results are reported in reference ii. Also in support of the design effort, a

limited amount of force and moment and pressure data was obtained in NASA/

Langley facilities.

Prior to delivery of the winglets to NASA, Boeing conducted a ground vibra-

tion and proof load test on the outer wing panel and winglet. Included in the

proof load test was a loads calibration test wherein 12 point loads were applied

to the wing.

The winglets and outer wing panels were delivered to NASA/Dryden in

May 1979. The outer wing panels were installed by NASA and instrument checkout

was completed in July 1979. The first winglet flight was made 24 July 1979.

The flight test program was interrupted several times for maintenance problems

with the test aircraft. These problems are discussed later in the paper.



Winglet Design and Construction

The winglet geometry was specified by the Governmentand conformed to
Dr. Whitcomb's design criteria as shownin figure 4. The winglet airfoil was
a general purpose airfoil and the sameairfoil section was used from root to
tip. No twist distribution was incorporated into the design. Airfoil coordi-

nates are listed in table II.

The design philosophy was to provide a winglet and outboard wing modifica-

tion for a flight research program and not oriented to production. The design

included the capability to vary the winglet incidence and cant angle on the

ground as illustrated in figure 5. A two-spar design was selected for the wing-

let. This design allowed for a positive positioning of the winglets using fit-

tings with a total of four shear pins per side. The seven different cant/

incidence combinations could be obtained by inserting bolts through designated

holes in the fittings. Gap cover fairings were provided to assure aerodynamic

sealing and smoothness for each setting. The structural arrangement is shown

in figure 6.

A new internal structure was designed for the wing tip to transmit the loads

from the winglet to the outboard wing. The principal load carrying paths were

from the front spar of the winglet to the rear spar of the outboard wing and

from the rear spar of the winglet to the outboard wing auxiliary spar. A thin

doubler was added to the outboard portion of the outboard wing to prevent skin

"oilcanning" in the fuel tank area. All areas were smoothed with aerodynamic

sealer and/or fiber glass to maintain smooth contours on the wing and winglet

(see figure 7).

The design also included provisions for total removal of the winglet so that

baseline airplane data could be obtained. A new tip cap was manufactured for

use in baseline testing.

The winglet skin was supported by ribs, placed at 10-inch intervals, from

the front spar to the winglet trailing edge. The leading edge was manufactured

by nesting two 0.050-inch thick skins bonded together with close out ribs at

the winglet tip and root. This approach allowed for minimum tooling since the

spars and ribs could be manufactured using numeric control procedures. This

approach did require that all loads from the winglet be transferred to the wing

tip through the fittings (no loads in skin at the winglet root). It was decided

that skin "oilcanning" would be allowed at the limit load, with no "oilcanning"

below 50 percent of limit load, which should have provided smooth airfoil con-

tours during testing. The design was verified by proof load testing during

which "oilcanning" of the skin was noted between 60 and 80 percent of limit load.

Pillowing of the skins during flight testing was found. The pillowing was the

result of a combination of the inboard pressure loading on the surfate and the

compressive loads in the skin. The inboard pressure loads were not considered

in the design, nor were they simulated during the proof load testing. Because

of pillowing, corrections were required to the aerodynamic drag; however, there

was no concern from a loads standpoint as the spars were designed to carry the

total load.
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Test Airplane

The airplane assigned to the flight test program was a very early model of
the KC-135Awhich had been used for other than normal tanker missions (e.g.,
zero "g" training missions for the astronauts). It had not received the lower
wing reskin (a fleet modification on KC-135 aircraft designed to extend the
fatigue life of high time or highly stressed airplanes), and due to its rela-
tively high and unusual usage, the Air Force determined that the airplane should
be restricted per the criteria for high time airplanes without the reskin modi-
fication. This restriction did not appreciably impact the flutter or perfor-
mancetesting, but did require that all loads data be gathered within a con-

strained envelope, rather than testing at the limits of the V-n envelope.

To reduce concerns that arose from the lack of a lower wing reskin, splice

plates were installed at the airplane's wing root. These splice plates are a

standard USAF modification designed to extend an airplane's fatigue life until

a lower wing reskin can be accomplished.

A photograph of the test airplane with the flight test nose boom installed

is provided in figure 8.

Instrumentation

A broad description of the instrumentation that was used for the various

types of measurements that were made (i.e., drag, fuel mileage, loads, etc.) is

provided in table III. A detailed definition of all the parameters that were

measured as of the last flight is provided in the instrumentation line-up in

appendix A. A noseboom was installed for the air data measurements. The boom

is evident in figure 8 and the details of its head are shown in figure 9. Long-

itudinal and normal accelerometers were attached to the angle-of-attack vane to

provide a measure of flight path acceleration.

A digital pulse code modulated data acquisition unit with a multiplexing

capability was used to acquire the flight data. In its design configuration

the data system provided a telemetry capability to Dryden and Air Force Flight

Test Center ground stations for real-time data analysis, and an onboard record-

ing capability as a backup in case of telemetry losses. This configuration was

acceptable for the flutter testing but proved unacceptable for the performance

testing. Tying the performance tests to the Edwards airspace complex in order

to allow telemetry to the ground station resulted in constrained flight rates

dependent on local weather and ground station scheduling conflicts, and con-

strained data gathering capability dependent on the length of the Edwards air-

space complex. Therefore, after eight attempts to gather performance data via

telemetry to the ground based station, the data system was modified to provide

an onboard computational capability that enabled breaking the ground link.

A PDP-II computer was installed on the airplane to provide the needed real-

time calculations (i.e. W, W/6, M, and hp) for performance testing. A CRT and

keyboard provided the display and programing capabilities for the computer. A

simplified block diagram of the data system in final configuration is provided

in figure i0.



FLIGHTPROGRAM

Test Plans

Initial planning laid out 35 flutter, performance, and envelope coverage
flights to be conducted in the order of sequence specified in figure Ii. Seven

winglet configurations were to be tested in an attempt to define the configura-

tion that would provide the best trade-off between winglet-induced performance

gains and loads. The strategy was to clear the four configuration corners for

flutter and thereby allow performance and envelope coverage flights for the

remaining configurations without concern of flutter. The 15 ° can/4 ° incidence

angle configuration included additional testing because it was the configuration

at which wind-tunnel data had been obtained to evaluate stability and control

charactegistics and buffet boundaries.

A typical performance flight plan is shown in figure 12. Note that it

includes not only performance maneuvers but loads and buffet boundaries as well.

The scani-valve runs were to obtain pressure distribution data. A typical flut-

ter flight plan is shown in figure 13. These plans nominally allowed for the

coverage of two fuel configurations per flight. Envelope coverage flight plans

included additional items as follows: roll response, minimum control speed,

check climbs, check descents, missed approach characteristics, stability and

control maneuvers, and ig stall approaches.

Upon completion of the testing of the seven winglet configurations, it was

planned to obtain data for a baseline configuration which was termed Modified

Wing Tips (see figure ii). This terminology resulted from minor external mod-

ifications that were made to accomodate the winglet installation.

While the baseline tests were being conducted, it was planned that the

USAF would have evaluated sufficient data from the seven winglet configuration

tests to enable them to select a configuration that they would most desire to

retrofit the KC-135 fleet with. That configuration then would be subjected to

additional flutter and performance testing as well as envelope coverage tests.

Test Accomplishments

Figure 14 presents a photograph of the test airplane with the winglets.

installed. A complete log of the test airplane's flight activity from the time

it arrived at Dryden in December 1977 is provided in table IV. Flight crew

checkout training was flown in the spring of 1978. Between May and September

1978, the aircraft was "layed up" while being instrumented. Upon completion of

the instrumentation installation it was necessary to take the airplane to Tinker

AFB, Oklahoma, for the installation of the wing root splice plates previously

referred to. Some airspeed calibration and instrumentation checkout flying was

accomplished prior to the delivery of the modified wing tips and winglets to

Dryden in May 1979. The winglets were installed and the first winglet flight

occurred on July 24, 1979. Per the plan layed out in figure Ii, this winglet

configuration was 15 ° cant angle/-2 ° incidence angle. This configuration

required seven flights to complete rather than the planned four and uncovered

a "pillowing" of the winglet skins as shown in figure 15. This "pillowing"

caused sufficient concern, relative to its effect on the performance of the test



articles, and it was decided to deviate from the test plan and go to the 15°
cant angle/-4 ° incidence angle configuration for the next tests. Wind tunnel,
pressure distribution, and lift and drags measurementswere available in the
15°/-4 ° configuration to provide someindication of the effect the pillowing
might be causing. The 15°-4 ° tests were conducted and baseline tests (modified

wing tips) immediately thereafter, still giving priority to the question of the

effects of the "pillowing" Preliminary analysis indicated that the pillowing

was having a small effect on the winglets' performance (approximately i0 percent

of the expected gain) but was certainly not masking all of their expected bene-

fit. (A detailed analysis of the winglet skin "pillowing", its causes and

effects, is provided in reference 12.)

With the effects of the "pillowing" in hand, other considerations started

driving the flight sequencing. The activity was behind schedule because of

airplane fuel leaks and instrumentation problems. Therefore, it was decided

to go to the 0 ° cant/-4 ° configuration and delete the 00/-2 ° and 0o/-7.5 ° con-

figurations. In testing this configuration, less than adequate structural

damping occurred at airspeeds greater than the operational flight envelope

speeds but less than the dive speeds. The low damping is discussed in detail

in references 12 and 13. Also, while testing this configuration a large fuel

leak developed that was the result of a crack in the front spar chord at the

number 3 engine strut location. The crack in the spar chord has occurred on

other airplanes and the source is a bad fatigue detail. Neither the fuel leaks

nor the cracked spar cap were due to the installation of winglets. The repair

of this wing spar required significant down time, January - July 1980. The

need for the onboard computational capability discussed under Instrumentation

had become evident and this down time was used to accomplish that modification.

Also during this down time the USAF selected the 15 ° cant/-4 ° incidence

configuration as the best for fleet retrofit. This selection was primarily

driven by the less than adequate structural damping that was found in the 0°/

-4 ° configuration. The retrofit selection is discussed in reference 14.

Upon resuming flight testing in July 1980 the 0 ° cant/-4 ° incidence con-

figuration was again checked for flutter to see if the cracked wing spare might

have had some effect on that result. Verifying that the cracked wing spar had

no effect, the 00/-4 ° performance flights were resumed with the onboard compu-

tational capability.

During the spar crack repair downtime, a review of the performance data

indicated that more data than planned for each configuration would be necessary

to sufficiently define the winglet fuel mileage gains. Therefore, the perform-

ance data points in the plan were doubled in number. Scatter in the data

resulting from weather disturbances was the prime driver of this conclusion.

The remainder of the flight activity was devoted to obtaining the 0°/-4 base-

line, and 15°/-4 performance data in acceptable quantity and quality as shown

in table IV.

CONCLUSIONS

A joint NASA/USAF program was conducted to accomplish the following

objectives:



I. Evaluate the benefits that could be achieved from the application
of winglets to KC-135aircraft.

2. Determine the ability of wind tunnel tests and analytical analysis
to predict winglet characteristics.

The program included wind-tunnel developmentof a test winglet configura-
tion; analytical predictions of the changes to the aircraft resulting from the
application of the test winglet; and finally, flight tests of the developed
configuration.

The pressure distribution, loads, stability and control, buffet, fuel

mileage, and flutter data produced fulfilled the objectives of the program.
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TABLEI. - PRIMARYFLIGHTDATAINTERESTS

Data USAF NASA

Lift and Drag

Fuel Mileage
Loads

Flutter

Stability and Control
Buffet

Handling Qualities

X

X

X

X

X

X

X
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TABLE II. - AIRFOIL COORDINATES FOR WINGLETS

x/c

0

.0020

.0050

.0125

.0250

.0375

.0500

.0750

.I000

.1250

.1500

.1750

.2000

.25OO

.3000

.3500

.4000

.4500

.5000

.5500

.5750

.6000

.6250

.6500

.6750

.7000

.7250

.7500

.7750

.8000

.825O

.8500

.8750

.9000

.9250

.9500

.9750

1.0000

z/c for -

Upper Surface

0

.0077

.0119

.0179

Lower Surface

0

-.0032

-.0041

-.0060

.0249

.0296

.0333

.0389

.0433

.0469

.0499

.0525

.0547

.0581

.0605

.0621

.0628

.0627

.0618

.0599

.0587

.0572

.0554

.0533

.0508

.0481

.0451

.0419

.0384

.0349

•0311

.0270

.0228

.0184

.0138

.0089

.0038

-.0020

-.0077

-.0090

-.0100

-.0118

-.0132

-.0144

-.0154

-.0161

-.0167

-.0175

-.0176

-.0174

-.0168

-.0158

-.0144

-.0122

-.0106

-.0090

-.0071

-.OO52

-.0033

-.0015

.0004

.0020

.0036

.0049

.0060

.0065

.0064

.0059

.0045

.0021

-.0013

-.0067
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TABLE IV. - KC-135 (3129) FLIGHT LOG

FLIGHT

NO.

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

FLIGHT

TIME

1.2

2.2

2.1

1.8

2.2

2.7

3.7

4.3

2.4

2.5

0.6

3.3

3.0

DATE

ii Apr 78

II Apt 78

12 Apr 78

12 Apr 78

14 Apr 78

20 Apr 78

24 Apr 78

28 Apr 78

21 Sep 78

25 Sep 78

22 Dec 78

17 Jan 79

14 Mar 79

3.8

3.0

2.8

2.3

3.5

3.8

3.8

5.4

2.9

5.4

23 Apr 79

26 Apr 79

30 Apr 79

24 Jul 79

1 Aug 79

2 Aug 79

i0 Aug 79

24 Aug 79

19 Sep 79

21 Sep 79

26 Oct 79

2 Nov 79

CONFIGURATION

Baseline

Baseline

Baseine

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

Baseline

15/-2

151-2

15-2

15/-2

15/-2

15/-2

15/-2

15/-4

15/-4

OBJECTIVE

Crew Checkout

Crew Checkout

Crew Checkout

Crew Checkout

Crew Checkout

Crew Checkout

Crew Checkout

Crew Checkout

Airspeed Calibration

and Flutter

Ferry to Tinker AFB

Check Flight

Ferry to Edwards AFB

Airspeed Calibration

and Flutter

Flutter and Instru-

mentation Checkout

Instrumentation

Checkout

Instrumentation

Checkout

Airspeed Calibration

and Flutter

Flutter

Airspeed Calibration

and Flutter

Flutter

Performance

Performance

Airspeed Calibration

and Performance

Flutter

Performance
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TABLEIV. - KC-135 (3129) FLIGHTLOG(cont'd)

FLIGHT
NO.

26

27

28

29

30

31

32

33
34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

FLIGHT
TIME

4.0

6.8

3.6

3.3

2.3

2.3

1.8

1.4

2.0

7.7

1.9
2.6

6.7

5.0

1.5

7.0

6.9

6.3

7.0

6.7

6.9

7.1

4.6

5.3

DATE

9 Nov 79

16 Nov 79

28 Nov 79

13 Dec 79

16 Jan 80

17 Jan 80
31 Jan 80

15 Jul 80

22 Jul 80

29 Jul 80

1 Aug 80
4 Aug 80

8 Aug 80

14 Aug 80

21 Aug 80

25 Aug 80

28 Aug 80

5 Sep 80

9 Sep 80

ii Sep 80

17 Sep 80

23 Sep 80

25 Sep 80
3 Oct 80

CONFIGURATION

Baseline
(ModWing Tips)
Baseline
(ModWing Tips)

0/-4

o/-4

o/-4

o/-4

o/-4

0/-4

o/-4

o/-4

o/-4

o/-4

o/-4

0/-4

Baseline

(Mod Wing Tips)

Baseline

(Mod Wing Tips)

Baseline

(Mod Wing Tips)

Baseline

(Mod Wing Tips)

Baseline

(Mod Wing Tips)

Baseline

(Mod Wing Tips)

15/-4

151-4

15/-4

15/-4

OBJECTIVE

Flutter

Performance

Flutter

Flutter and Performance

Performance*

Performance*

Inflight Fuel Leak

Check

Functional Check Flight

Flutter

Performance

Performance*

Performance*

Performance

Performance

Performance k_

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance*

Performance
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TABLEIV. - KC-135 (3129) FLIGHTLOG(cont'd)

FLIGHT
NO.

5O

51

52

53

54

55

FLIGHT
TEST

2.7

4.6

7.0

3.0

2.0

4.8

DATE

15 Oct 80

17 Oct 80
19 Dec 80

23 Dec 80

24 Dec 80

8 Jan 81

CONFIGURATION

15/-4

15/-4

15/-4

15/-4

15/-4

15/-4

OBJECTIVE

Performance*

Performance

Performance

Performance

Performance**

Performance

*Flight aborted due to rough air.

**Flight aborted due to computer malfunction.
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Figure 3. - KC-135 winglet flight research and

demonstration program milestones
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Figure 4. - KC-135 winglet design
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NEW/MODI FlED STRUCTURE

\

Figure 7. - Outboard wing/winglet arrangements
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Figure i0. - Computer interactive data system

(simplified block diagram)
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Figure ii. - Planned KC-135 winglet flight sequence
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17 O_Jl_ 92 _ PJ_T UIO _b 3b
17 Q_U15 92 _ p_T U15 37 37

17 Rt117_ 9Z _ P_T U20 38 _8

17 R_U_ g? _ PORT C_O 42 _?
17 Q_tl_ 9_ _ _0_1 U4_ 43 43

17 _tt_ 92 _ D3_1 U60 _5 _5

17 R_IIS_ 92 T _QT U55 _6 46

17 e?_=c_8 _ P_P_SU_ _ P_kT 4_ 4_ _

PA_E _ CF COPY |

PCM _TT RAT[! ]2_ KHZ

BTT_IWCRO_ 10
WOR_SIFR_MEt _

FR/CJTA CYm 10

FBT-BIT1-MSB

O0 , 01 ,

SVIO2

71 2C

OZ

33



T_AY8 01107/81 FLIGHT 2NSIRIIMFNT_TIGN PARAMETER LIST
_VI 0 n_TE: 712417Q

=LT NO. _4 PROJ TNST_ E_GPZ GE_c K_NNEP

_ED FLT _AT_z _2124/_

T_ 8RFOI _7 S/N

o_q SVSICU8 NC, 1-_0 _A1 NO. 1

P_q _YS HUPFLI RMCU HJT_ F_AMF SYNC VCP_$!
SCA_)VALVE NO. 3

$1V PRESSURE P_°ql_ SV3P 5/V _FF PRES$_F DARHID SV_POB $1V PORT TC

TTEN t PJRAflEIFR x PORT z PJ_A_ETERS AFFSPTFD z _OmT

MO, I ......................................... :)D DFC: : ................................ : hE,

.$Z$.£-_IZ]!D-.L ............. b_E .............. 1 ...... L ..... 1 ............ &E_£_ ............. 1 ......
1B _=¢0_ _EF PRESS P_]PT GL qZ X _V3 1 10 P_RE_ PER SFC 1

1R R_IJT_ 9_ PCT PORT UT_ S.V _ _ 2
1_ _1_ _Z PET _OPT 80 S.V 3 3 20 _A_DLE_ PE_ _Q_T

1_ R_ut_ _Z P_T 8_kT n_ S,V 3 4 4

_ R_U_ 92 PET _RT _0 S.V _ 5 5

1_ R_lJgq _ PET P_RT ¢_ $.V 3 _ 6

t_ _3L_ 92 PCT _UR1 L03 $.V _ 7 ?

1B R_LO_ 9? OCT PCkT L_ $.V _ 8 8

t_ _L|_ _2 PET 8_?_T LI_ _.V 3 9 Q

18 _3L2_ _2 PGT _ORT L? x $,V 3 10 10
18 _3L_ _Z 8CT P_RT L3_ S.V 3 11 11

1_ R3LS_ _ PET P_RT L_5 S.V 3 1_ )2

1_ _L_ _ 9? PC| PE_I LF_ e,V 3 13 )3

1_ o_L_5 Q? PET °_T L _ _.V 3 14 14

1_ Q_L_ _ 92 PET PO_T L_5 $,V 3 1_ 15

_ u4110_ _; PET P_,RT U_ _.V _ 16 16

1B R41J_I _ 8CT P_QT _C1 S,V _ 17 17
t_ R41J_ _ PET 8_T U_3 _.V 3 18 1_

t n _Jl_ _9 PET PORT U]O S.V 3 20 20
LB _4Ulq _ _C1 P_PT U1 _ S.V _ 21 21

_R Q4t)_ 9_ nET P_T U_O $.V 3 27 Z?

lq _4UZS 9_ PET r_T _!2_ S.V 3 _ 23

t_ R4113_ _ PET PORT IJ30 S.V 3 Z_ ?_

18 R4U_ _ PET pO_T U3_ S,V. 3 2_ ?_
1_ _4_J_3 9_ PET _RT U40 S.V. 3 2_ 26

L • R4_14_ Q9 P_T _T U_ _oV, 3 27 27

1A R_tJ_ q_ PET _ORT _0 _.V. _ 30 30
1R R4_I_ q_ _C T P_T U55 _.V. 3 3t 31

_B _U_ _ _CE PORT UTO S.V. 3 _2 32

1_ Q4_J?_ q_ P£T P_T U7_ _.V. 3 3_ 33

lq R4U_ _ PET P_T tl_O $,V. 3 34 3_

18 o41Jo_ _ _GT P'_RT UQO _.V. 3 3b =6
1B R4L_ _9 ©CE °_kT L_3 S.V, 3 3_ 3?

IB R_L_ _ _CT P_T L_ _ T.V. 3 3 _ 3_

1_ O4L1 _ _ _r| P_RT L1 _ S.V. 3 3_ 3Q

1_ _L _ _ PET PORT L25 S.V, 3 40 4_

1A _4L_ _q P_T Pi_T L3_ _,V, _ 41 41

_ R4L_ ! ;_ PET P_T t4" _.V. 3 _Z _2
1_ _4L5_ _ OCE P_T L_ _ $.V° 3 _3 _3

1_ _L_ _ PET P J_i L_5 S.V. 3 _ 44

1 • o4L?_ 9_ PET P_RT L?_ _ov, 3 4_ _

T8 R_L_ _ PET P IRE LS_ _.V. 3 46 &6

l _ e_r_8 _F 8;ES_ _nPT 4_ 48 4B

PAGE a CF COPY

PC_ B)T RATE1 12_ KHZ
BITSIROR_Z 10

_QR_SI_RAPE: 64

FRIQ_TA CYI IC

FBT-RTTI-_$E

O0 _ 01 •

SVZO3

22 21

02
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T_AY$ _lluTIP1 FLI_HI [NSTRU_rNIATION PAR&METEQ LIST
R_V: D OATE: ?/Z_/?Q

V=_ICLE: KC-135 _|NGtFT PROG©AM

_LT N3° 05_ P_OJ IN_TR E_GPm _EqE KENN_R
_qEO FLT DATEs I?/?_IRO

Tq FREO: w'7 SIN

=C_ $YS/CJ_ N_, l-nO r_AT NO, 1

D_q Sy_ MOCELS _MDU MAIh F_ANE SYNC WCFDSI
SCANIVALVE N_, 4

$1V PRESSURE PJo_ID SV_O _IV REF FR_SURE PARNIC SVRPOB _IV PORT IO

TTFq ! PARAMETER ! POFT : PIRA_ETEg_ AFFECTF_ : PO_T
N_, : ...................................... ---:ID DEC: : ................................ : NC,

.$Z_.!__t_ID___ ............. _ .............. _ ...... L ..... _ ............ _aR_ ............. 1 ......
19 _6?ErO1 R_FERFNCE PRFS_IIRF P_RT I 1 1C PORTS / $FCOND 1

1_ RSUOO 101 • PDPT UO0 _ ?

19 mqtl_9 1&1 • PORT O? 3 _0 SAMPLFS I POOT 3

1_ RSU_ 10_ _ _D_T 05 4

1_ o5U1_ 101 _ _ORT 1 _ = 5

19 _5)_x 101 • POPT 2_ _ 6

|9 _5_ L01 _ PORT _5 q q

l_ R _1_5 lot • _OPT _5 10 ]0

lo _ ql_?S 1C1 _ _ORT 7_ 11 1_

_9 _51_ • 101 _ PORT 8_ IZ 12

lq _5_195 _01 _ _ORT _ 13 13

1_ R_LO _ IG1 _ °_T LO_ ]_ 1_
19 _5L_ 1¢1 _ =O_T LOS 15 15

lq _5L1_ _01 _ _O_T L_5 1_ 16

19 PqL_q ]_1 _ _RT L=_ 17 17

_Q RSL3_ 1C1 _ DO_T L3_ _8 ]8

IQ o5L_5 L01 _ P_R_ L45 lq lq

I_ _5L_ 1_1 _ PO_T LS_ 2_ EO
lq _qL_ IC1 _ _RT Lb_ Z1 71

lq _5L_ _ ICL • P_T L_5 Z_ ?_

1Q RSU3_ 1_3 Z =DRT LUO ?_ _5

1 ° _lsl_ _03 • POPT UI_ ?8 ?8

|q Q_'_ ]03 _ PJgT I1_ _ ?9

19 _113_ 103 _ P_T U_ 30 _0

lo P_tJS_ 10_ _ OORT L'5_ 3Z _2

1_ PS't65 l_J _ _,3RT U_5 3_ 33

|Q _6U7" 103 _ =,l_T U?_ 3_ 3_

19 R61)_S 103 _ _O_T _q_ _ 36
1_ o_L_ 1G3 _ _3_T L_ 3? 3?

I_ _LOq ]03 • °O_T tO_ 3_ 3_

1o D_LtS 1G3 _ _O_T LIS _o _9

19 _6L_ z03 • _.|kT L_q _1 _1

1Q q6L_ 1_3 • D3gl t_ _2 _2

1_ _6L55 103 _ DOmT L_5 _ _

lq _L? x 1._ _ _wT L?_ _5 _5

19 _L _q tC3 • U_T L85 _ _6
_o o_gS 1_3 _ _ORT Lg_ _7 _7

PAGE 6 [F C_PY

PCP B|T RATEI ]?_ KH_

gZTSl_PlOm IC

W_R_/FRAPE¢ 6_

FR/DATA CY_ ]C
FET=BTT1-M_R

O0 • 01 •

SVIP_

23 22
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FLZG_T [N_TRUWENTATTON PA_*METER LI_TTQOAY| _11071el
R_VI O rAT_! 7124179

VEHICLE1 wC-135 w]NGLFT PROGRAM

_LT N_. 054 RROJ INST _ E_GRt _ENE WENNER

$_EO FLT _ATF: _21241B3
Tq _REOI M_Z SIN

_CM _YSICJP NCo l-_O F_P_A1 NO, !

P_W $Y$ MO_EL: _uOU MJI_ FPAM_ SYNC WOROSI
SrA_IVALVF N_,

SIV PRFbSURE PARMID 5V_P _IV REF PRESSURE PARMIO $VOPOB _/V POPT I_

......... I_2.II_L_DL_L_2__QL--_O---I) ............. _ZI_%ICL_OLILWD__QL__)L__}) .......... IXI_IIEP NOIF* WO POS
ITp_ _ _AeAMETER I PORT i PARA_ETFRS _FFECTED ! PORT

_, I ......................................... _1_ OEC_ I ................................ 1 NO,

o2_-_-_--_ ............. _ .............. _ ...... _ ..... £ ............ EE_dEE_ ............. 2 ......
?0 _P_01 REFERE_C r PFE$_URE FORT 1 _ _0 PORTS I SECON_

PAGE T CF CCP¥ ]

PCP BIT RATft 1_ KHZ

BITSI_OROI 10
WORflSIFRAP_ 64

FRIOATA CTI 10

_0 R?UO_ _05 • R_RT UOq ?

70 R?_YO_ 105 _ PORT UOZ 3 _0 SAMPLPS I PORT 3

_0 RT'JO_ I0_ _ PORT U05 4 4

_0 R?UI_ _ Z R_PT U1 _ _

?0 R?tl4_ 1_5 _ _ORT U4_ _ B

70 _?_16_ 10_ T _ORT U_ 1G 10

ZO RTU?_ 10_ _ PaRT LI?_ 11 11

_0 R7!_ lO§ • PORT U_S 1Z 1_

20 R?tO_ _0_ _ _RT LOZ 14 1_

• _ R?LOS _5 _ "OPT LO_ 1_ 15

2_ R?Llq lG_ _ _ORT LI_ ]_ l&
_0 R?L_S lC_ _ _O_T L?_ 17 17

Z_ R?L4_ _C_ _ _uRT L4_ lg 1Q

20 R?L_ 10§ _ °_RT L_ ZO 20

Z_ R_Lmq _C_ _ PORT L_ _3 Z3

?0 R_L_ LC_ _ PO_T tg_ Z4 74
?_ _RrFZ_ _F_C_ PRE$_URE PORT 7_ 25 2_

20 _Rc_z6 R_F_PFNC_ p_URc FORT Z_ ?6 ?_

70 _qRE=27 REFERENCE p_E$StlRr R_QT _7 27 _7

?0 S_REF_ REFFR_NCE PPE$SURF P_RT Z_ 2_ ?_

?_ S_ R_FNC_ PRESSUR_ PO_r _g 2_ ?9

?0 _5_3_ _EFEEFNC r RRE_SUWE P_RT 30 30 30
?0 _31 REPERFN_ PRF_SU_F R_RT 31 3L _l

_0 $_Rc_32 R_ERENCE PRES_URr PORT 32 3Z _2

_ _R_3 _EFrKFNC c _E_UP_ FJRT 3_ 33 33

2n r5_4 _EFFRPNCF pRESSURE PO_T 34 34 34
_ _RE=_ R_FERENC _ PRESSURE PORT _ 3_ _

?0 e_¢©_6 REFERENCE PP_$SURE FORT _6 _6 7b

_0 _Fc37 Q_FEPENC_ Red,surF F_RT _7 _? 37

_ $qo_3@ _EFER_NC_ FRE_IIRE _ORT 3e 3_ _

_0 $_REc_9 _rFFRENCE PRcbSURE P_RT 3Q _q 39

_0 e_R_4_ REOFFENCE PRESSURE PORT 40 _0 40

?_ e_F_4] RE_ERENCE P_E$SUEF FORI 41 4L 4_

_0 $_r_42 PE_RFNC_ P_E_$UeF PORT 4Z 4Z _Z
_0 $_R_43 _FF=_E_CF PRESSURF F_T 43 4_ _

?n S_RC_44 R_RE_CE PRFSSIJRF PORT 44 _4 44

_ $_r_4_ WEC_ENC_ _FS_U_ FORT 4_ 4_ 4_

_0 ¢_ _E_ENCE PRPS_URF _bRT 4_ 4_ _6
• _ _qRc_47 _ER_N_F P_P_ PORT _7 47 4?

_0 $_R_4_ R_FFk_NC_ P_SSURF PORT 4B _ 4_

FBT-_TT1-MSB

GO • O! •

_VTO_

02
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r_OkYs OtI071PL FLYGH[ INSTRbME_T_TI_ PAQAHETEP LIST PAGF 8 CF COPY 1
_FV: 0 CA161 7/2417q

U=_ICLF: KC--13_ _INGLET pROqDA_ PC_ BIT _ATE: 125 KHZ

:L 7 N_. &54 PROJ TN_T_ FNGR: _FNE KENNER BITS/kOROS lC

_C_ED FLT hATE: 12124/80 WOROSI_PAMEs _

Tq PREQ: m_l SIN FR/_ATA CYI 10

_CM SYSIC_ NC* l-G1 _AT _0. 1 FST=_ITI"MS9

o_ $Y$ M_OrL: R_OU _IIN FRAHF $YN¢ WORg51 O0 , Ol , 02

..... __ ....... __I_Z_ .......... _ ..... _.............. ;_....................................TTM PA_[_[_ _ | _I_ : FN_ :F_AP:FRAPF :AMP:CORP: RFF : VPlTP :FILTFn :ITM

M_.:o_ : CaLID 1 hkM_ m D_TE i _ANGE : UNITS :_CR_: _0. :RATF|ALG ! PPESS : KP ! ....... IN_e

-SZSL ....... L ............. [ .............................. _ ........ _LO3-_-_I_U£ ........ L_D£-_ ..... £ .... Z .... £g_EUID.L_A_ID°![B£gIg|IGG_
65:¢¢0 _= 1311 07 101

_AI¢T_TPP 1311 07 102

67:_U_ :311 04 017

_RI_U3TT :311 04 _1 ©

?O:$_TI 13L1 uZ _Z3

?41_qTq 1311 O_ 0_7

7FI_T6 1311 OZ JZ_

7615_eT7 1311 32 _Z9

771_T?¢1_l_311 01 001

7qzPT_El_1311 01 003

_01"T_CI"41311 O1 004
ql:_T_E!aq:311 01 00_

_ZIOT_=lP6:311 01 00_

831_T_lP7131_ 01 007

_4, o7_rI_81311 Ol 008

86:PT?F_°_:311 01 010

_n:_ALtT :311 _4 021

Ol:giL_! :311 O_ OZ_

q_lqCltCM I31L 05 010

941_qT_ :311 O_ 031

• _:_RTII :311 J6 013

qol_Tl¢ :311 06 016

_011PY_£gDSI3_ O[ 0|_

10?:_T_E?P6:311 Ol 014

103:OT_C_:311 01 015
l_4_aT?_qt31l 01 016

I061"T_E_°_:311 Ol 018

I071_T_c4°11311 OL 01_

l_z°T?C4_1311 _I O_G
I00:_7cI_i:311 )I 0_1

II_1_$?cI_131101 O_?

II_:FT_T4C :311 08 197

: :UcL 101aLITEP ENG 2

OK: FUFL TOT_LIZER EM_ 2

8*: RUCO_R PJSITION

8_I _CDP_ TPIM TJ9 POSTTT_N
O*m FUFL FLOW _AIF CIr. _* 1

: FR_N! SPA_ gFNDIN_ _ SU_r

: F_GNT _FA_ _HE_P _P _URF

: _RO_T _P_k R_NDING UP SU_P

: FRuNT _PAR _HFAF tP SURe

: FRO_T $FAR _FNO]NG UP 5UR_

: AF1 5PA_ SHFAP UP SURF

s AFT _lR BF_OI_ tP SUrF

_o: PT-= E_GIN_ 1 POF1 1

AP: _T*_ £NGINf 1 P_T 2
4P: PT-_ ENGT_F I FO_T 3

¢_t PT-_ fNGTq_ I POe_ 4

A_: _T-_ f_GINE 1 POP1 5

Ao: PT-Z FNG_F 1 rOPT 6

A_I Pl-? _|NF 1 PO_T 7

_1 PT-_ E_GINr 1 PO_T
A_t aT-2 6NGINF 2 POPT 1

IP: PT-Z ENGIqE 2 P3Pl Z

APS ;T-? _N_INF 2 PO=I 3

: FUrL TJlALIZF_ r_c 3

0_: FUEL TO1AL|TF_ F_G 3

04: L/q 1N_D AILF_ON PO e

G_: _1_ IN_ AILPRJN _OS

_*: COCKPIT NO_AL JCCFL
1 ArT _A_ _HFAR UP _U_ ¢

: I 0 51Z:COCqTS : 4ii

:GBIZSI7_I 5l? b§535:COUNT$ : 42:

:U611&/_C: -2_ ?5:0EG : 43I

:0611618C: -_1 Z2.SIOE_ : 4_:

:CbllblS_: _ 4_:GP_ : 4T:

I s : 471

I I I : 4_I

: : : t 52i

:0611bl801 -4 _:PSIO : 53z

:Obll&lSC: -4 4:PSID : 5_:

:_6116/POs -4 4;D$ID _ 55:
:0611618G: -4 4:PSID : _61

:U611&/8C: -4 4:PSIO : 571

:ObllblAOt -4 4IPSID : _81

11112117gl -4 41P$I0 s _:

:0711918C: -4 4:PSTO : bO:

106/161P0I -4 4:PSIO | _1I
:0b1161801 -_ 4IP_IC 1 b21

:U6116/901 -4 4:PSTD : 63:

: : 0 _I2:CQUkT$ : 41s

|0Bt28178| 512 65_3_:COUNTS : 4_:

:061161_C:-1q,4 Ib,_:DFG : 431

:L0130/8C:-19.2 19,_tCEG : 441
108/11/E01 -1 3IG : 4El

: : : 46:

: AFT bPAR _N_INC UP bURP :

I &FT 3°A_ _F_P LP 3HRF : :

: A;T B_NPI_G UP $UR_ : :
: FqJNI _PAR EFN_]NG LO SU_ :

: F_HI _eAE _AP LC _li_F :

: _RONT _PAk _FN_[_G LC _UR_ :

t=: PT-? _NGINE 2 PO_T 4 I06116/8G:

q_: _[-2 ENGINE 2 PO_T _ :0611618C:

AP: eT-2 ENGTN_ ? PO_T 6 :_6116/8£:
4_: FT-Z _N_NF _ PU;T 7 :06/16/8C1

A_: Pl-_ E_GT_E Z POGT 8 :Ob/16/e01

A_: Pl-_ FN_i_r 3 PO_T I :C611618_:

_P: PT-_ cN_I_F 3 P3_T 2 :06/l&lSOS

kP: PT-Z E_GTNE 4 PO_I I :_6116/6C:

_a: OT._ rNG;NC 4 PDF1 Z :061161PC:
_o: PS-2 =_GI_E l PO_T A ¢06116/"01

A_: p_-? rkG I Ra_E POkT R :06/16160I

: FU_t T_TJLITE_ FN_ 4

0_: _U_L TdFALIZ_R _N_ 4

-4 4:PSIO

-4 4:PS1C

-4 4;PSIO
-4 4:P$I0

-4 4:P_TD

-4 4:PSID

-4 4:_SI0

-4 4:eS]O

-4 _:PSTD
-6 _IPS]D

-_ 6:P51C

: : :C_UNT_

:0_1Z8178: _lZ 65_351CqUNT$

: 4?:

I 481

: 4g:
: 5C:

: 511

: 52:

: 5?:

: 541

: 55:

: 57:

1 60:

: 611

I b?:

: 63:

: 41:

: 42:

O: 3q1100CI

05 3_:100C:

L: 3gl400C:

O: 3gz40001
G: 39t400C:

0119.5140001

011g._14000:

C:1q.5140001

O,lg,_14000:

OtIg. E:400C:

C11g,5140001

011q,514000!

O:Ig. SI4OOOIOPR01C

011g,51400010_01C

CIlq,Si4OOO:OPR01C
G:Iq,_I4OOOIQPR01C

C:lg.5:4OOO:OPR01C

C:I_.St400O:OPRO|C

O: ZCz4OOO:OP_01C

0:1_.51400010PR01C

C:lq._m4OOOIOP_01C
_:1_,5:4000_0P_01C

0:1_.51400010PR01C

11 3g:_OOC:

11 3g:lO00l

I: 3_:4000:

]: 39_4000i
I: 3q:40001

I:1g,5140001

111_.5:40001

1119.514000,

1:1_.5140001

l_lg.514000z
l:lq. Sz400C:

1:1;.514000:

lZlq*SI4000tOPR01C

I:lq*Si4OOO:OP_01C

I:I_.5:4000:QPe01C

111_,514000:0PR01C
I:Ig.5:4OOO_OPR01C

I:Z_.5:4000:QPROIC

l:l_._:4000:OP_OIC

I_Iq.5_4OOO:OPR01C

1:1_.5:4000:QP_01C
I:I_*_400C:OFROIC

I:19,5:400010P_01C

?: 3g:lOOO:

2: 3q:lOOO:

I

:FTCT?F

:FTOT3F

zFTOT4F

558 _l 3

55: 61 4

55_ 68 6
_51 61 T

551 61 8
55l _l. q

55¢ 68 10

55: 6t 11

551 68 12

_: 68 13

5: 6_ 14

5: _t 15
5_ e: 16

58 6l 17

5S 61 18

5s 6! lg

5_ 6* 20

Sa 61 Z]
SI 61 22

_t 68 23

t t 24

, s 29

551 6S 26

_5s 6s 2T
3_1161 28

5_s 6l 2q

5Ss 61 30

55s 6s 31

551 6: 32
SSs 6s 33

SSS 61 34

55s 6: 35

51 6t 36

51 61 37

58 6: 38

5S 61 3g
_1 61 40

5: 6! 41

5I 6I 43

• 5: 61 43

5: 6t _4
_I 6I 43

5I 68 46

s : _7

I S 41)
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TqnAyz _/07/_ FLIGHT IHST_UNFhIATI_N PA_AHcT r_ LIST pAGE q _F CCPY 3
R_V: D DATE: 712417q

V_LCL_: KC-135 _T_GL_T _OG_AM PC_ _IT RATE1 125 KW7
=LT N3, _54 PR_J I_TR E_s GEN_ KFNN_ _ITS/WOgDs 10

_C_E_ FLT [,_TE: L2/74/_ WORDS/FRAMES 64

TW Fk_O: _7 SI_ FP/_JTI CYS 1C

o_w _YS/CO_ NC. l--U] _jR_6T NO* 1 F_T-PITI=WSB

o_ _YS _OC_L: RM_U M_IN rPAME SYNC W_PDSt O0 • 01 _ 02

..... i_i_ii_ii_ii_i_[i_--_ .... _I_I_III_I_IIII_IIII_H_ .......... iiii_ ..... _---T................................................T_WI _O[_[[E_ I [_L_[_ I EN_ CPA_IFEAWFISAMPICOMps gEF ! V_ITP IFILT_R IITM
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I[_:DaLL_T ;311 04 923 _: LI_ I_ _n AlL _O_IFOL TA_ S_I_618LI-ZIo_ Iq,SS_EG 431 ?l 3gs4000l §51 6l 6Q

117:$GDTlb 1311 3b 31_

)1_1_01|7 :711 U_ 0lq

1LqtSG°T_ _ :31_ O_ _?_

l_Ot_R_lO :311 O_ 02]

1_1_¢_T_9 :311 O_ 02_

I_:_G_T?I :31l O_ _73
1_3:_S_Et_t3LI 01 37_

177=_?_:31L 01 3??

130t°$7¢_°_:311 01 O_C

I_l:D_A:311 O_ 031

_4:_°_}1 _ ;311 O_ lO?
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KC-135 WING AND WINGLET FLIGHT PRESSURE

DISTRIBUTIONS, LOADS, AND WING DEFLECTION RESULTS

WITH SOME WIND TUNNEL COMPARISONS

Lawrence Montoya*, Peter Jacobs**,

Stuart Flechner**, and Robert Sims*

SUMMARY

A full-scale winglet flight test on a KC-135 airplane with an upper

winglet was conducted in a joint NASA/USAF flight project. Data were taken at

Mach numbers from 0.70 to 0.82 at altitudes from 34,000 feet to 39,000 feet at

stabilized flight conditions for wing/winglet configurations of basic wing tip,

15°/-4 ° , 15°/-2 °, and 0°/-4 ° winglet cant/incidence.

An analysis of selected pressure distribution and data showed that with the

basic wing tip, the flight and wind tunnel wing pressure distribution data

showed good agreement. With winglets installed, the effects on the wing pres-

sure distribution were mainly near the tip. Also, the flight and wind tunnel

winglet pressure distributions had some significant differences primarily due

to the "oilcanning" in flight. However, in general, the agreement was good.

For the winglet cant and incidence configuration presented, the incidence

had the largest effect on the winglet pressure distributions.

The incremental flight wing deflection data showed that the semispan wind

tunnel model did a reasonable job of simulating the aeroelastic effects at the

wing tip.

The flight loads data showed good agreement with predictions at the design

point and also substantiated the predicted structural penalty (load increase)

of the 15 ° cant/-2 ° incidence winglet configuration.

INTROD UCT ION

The NASA Langley Research Center has conducted extensive experimental wind

tunnel investigations on the effects of winglets on jet transports at various

subsonic Mach numbers, references 1 through 8. Winglets, as described in refer-

ence i, have shown significant performance improvements on the KC-135 airplane.

To confirm these wind tunnel predictions, a joint NASA/USAF full-scale winglet

flight evaluation on a KC-135 was conducted at the NASA Dryden Flight Research

Center. The flight measurements consisted of total airplane lift and drag,

loads, buffet, stability and control, range factor, and wing/winglet pressure

distributions. These measurements were taken with the winglets on and off for

various winglet cant and incident angles to determine the incremental effect of

winglets on the airplane performance.

*NASA Dryden Flight Research Center

**NASA Langley Research Center
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This paper presents selected wing and winglet pressure distributions,

loads and wing deflection results with some wind tunnel comparisons. The data

presented are for Mach numbers of 0.70, 0.78, 0.80 and 0.82 for altitudes

between 34,000 feet to 39,000 feet. The configuration tested in flight con-

sisted of the basic wingtip (winglets off) and wing/winglet with winglet varia-

tions of cant/incidence of 15°/-4 °, 15°/-2 ° , and 0°/-4 °. The design conditions

for this study are the 15 ° cant/-4 ° incidence winglet configuration at a Mach

number of 0.78 and lift coefficient of 0.42.

SYMBOLS

b !

c

c

c
av

c
L

c
n

c
n
A

C
P

g

M
OO

Pd

PZ

P
r

P
oo

clo_

R

w/6

Exposed Semispan of Wing with Basic Tip, 55.2 ft

Local Chord

Mean Geometric Chord of Exposed Basic Wing, 18.73 ft

Average Chord of Exposed Basic Wing, s/b', 17.52 ft

Lift Coefficient

Section Normal-Force Coefficient, Integration of Pressure

Measurements

Airplane Normal Force Coefficient

Pressure Coefficient, (Pz, - P )/q_

Gravitational Acceleration, ft/sec 2

Incidence of Winglet Measured from Free-Stream Direction,

Positive with Leading Edge Inward for Upper Winglet, deg

(see figure 3).

Free-Stream Mach Number

Differential Static Pressure, psi

Local Static Pressure, psi

Reference Static Pressure, psi

Free-Stream Static Pressure, psf

Free-Stream Dynamic Pressure, psf

Reynolds Number per Unit Length, per ft

Airplane Weight Divided by Ratio of Pressure at Test Altitude

to Standard Sea Level Pressure
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x

Y

z

z'

Chordwise Distance from Leading Edge, Positive Aft

Spanwise Distance from Wing-Fuselage Juncture, Positive Outboard

Vertical Coordinate of Airfoil

Distance Along Winglet Span from Chord Plane of Wing, in.

Angle of Attack, deg

Exposed Wing Semispan Station (based on basic-wing panel), y/b'

SUBSCRIPT

basic Reference Configuration, Basic Wing Tip

ABBREVIAT ION

L.S. Lower Surface

U.S. Upper Surface

G.W. Gross Weight

B.M. Bending Moment

AIRPLANE DESCRIPTION

A Boeing KC-135 airplane, figure I, with modified outboard wing panels was

used for this study. The modifications were primarily to the internal struc-

ture near the wing tips for installing the winglets with the capability to

allow winglet cant/incidence changes on the ground. Provisions were also made

so that a "basic" KC-135 wing tip configuration with the winglets removed could

be installed.

• he other major aerodynamic differences from a standard KC-135 was the

addition of the nose boom for obtaining airspeed and flow direction, and the

absence of the refueling boom.

Wing. The basic wing is a typical first generation transport configura-

tion with a quarter-chord sweep of 35 ° , 7 ° dihedral and 2 ° of incidence at the

root chord. The wing has no geometric twist and the thickness varies nonlin-

early from 15 percent at the wing-fuselage juncture to 9 percent at the trail-

ing edge break and then remains constant at 9 percent to the wing tip. A

typical outboard wing airfoil section is shown in figure 2 with the coordinates

presented in table I.
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Winglets. The winglet configuration used in this investigation is

presented in figure 3. The winglets employed an 8-percent-thick general avia-

tion airfoil. Winglet airfoil coordinates are presented in table II.

The winglet has a span approximately equal to the wing tip chord, a root

chord equal to about 65 percent of the wing tip chord, a leading-edge sweep of

38 ° , a taper ratio of 0.32, and an aspect ratio of 2.33. The planform area of

the upper winglet is 3.8 percent of the exposed trapezoidal planform area of

the basic wing. The upper winglet is canted outboard 15 ° from vertical (75 °

dihedral) and incidence (toed out) of 4 ° (leading edge outboard) relative to

the fuselage center line. The upper winglet is untwisted and therefore has

constant negative geometric incidence across its span. The "upper surface" of

the upper winglet is the inboard surface. This geometry was derived from the

wind-tunnel model coordinates with the exception of some slight wing/winglet

juncture fairing differences which result from the method used to allow cant/

incidence variations for the flight test.

TEST CONDITIONS

Flight data were obtained over a range of angles of attack at speeds from

Mach 0.70 to Mach 0.82, for altitudes between 34,000 feet to 39,000 feet and

dynamic pressures from about 129 psf to 240 psf. All the wing and winglet

pressure data presented were taken at steady state trim conditions. The loads

data are for cruise conditions and ±0.5g roller coaster maneuvers from trim

conditions.

IN S TRUMEN TAT ION

Wing/Winglet Pressures. The flight wing/winglet pressure measurements

were obtained on the right side from seven rows of orifices on the top and

bottom surface at the span stations and locations shown in figure 4. Both the

span and chordwise location of the orifices were essentially the same as the

wind-tunnel model of reference 5.

All the wing orifices except the leading-edge orifices were externally

mounted using the method similar to that found in reference 9. The external

tubing size was 3/16 inch A.D. multibore (strip-a-tubing) tubing. All the wing-

let orifices were flush mounted with an inside diameter of 1/8 inch.

The wing/winglet pressures were transmitted to instrument bays, where the

pressures were measured with scanivalves. The locations were chosen so that

the pressure sensors could be as close as practical to the orifices.

Differential transducers were used on all scanivalves and referenced to a

compartment source which was measured by precision absolute pressure transducer.

Wing Deflection Measurement. A medium format camera was mounted on the

fuselage door looking out over the right wing upper surface toward the tip,

figure 5. Two deflection targets were installed at the wing tip with reference
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targets installed on the inboard portion of the wing to establish a plane from

which the flight deflections were measured.

Wing/Winglet Load and Stress. The load and stress stations where strain

gages were installed are shown in figure 6. The winglet, wing-winglet inter-

section, and outboard wing station gages were installed during the wing tip

modification and after construction. These gages were calibrated for loads

measurements during proof tests. The wing root station gages were installed

chordwise on both the upper and lower surfaces strictly for stress measurements.

Air Data. Air data measurements were obtained from a standard NACA air-

speed head mounted on the nose boom. The airspeed system was calibrated using

the techniques described in reference i0. Flow direction was obtained from a

flight path accelerometer (F.P.A.) system (reference ii), also mounted on the

nose boom aft of the NACA head.

Accuracy. The pressure range for the scanivalve transducers was scaled on

the basis of the wind tunnel pressure coefficients for flight conditions near

the winglet design of Mach 0.78 and altitude of 35,000 feet. The scanivalve

zero pressure differential was checked during each flight by connecting both

sides of the differential transducer to the same pressure.

The average error in C_ based on the flight data was determined to be

about 0.01, which is simila_ to that of the wind tunnel data.

The estimated error in each of the following measurements at M = 0.78 and

at 35,000 feet altitude is as follows:

Pd' psi ±0.6

P , psi ±0.3
r

P, psf ±0.02

M ±0.01

±0.25 °

q, psf ±0.08

For the loads and stress measurements presented in this paper, the esti-

mated accuracies are as follows:

Location Type Accuracy

Wing-Winglet Juncture Bending ±6%

Outboard Wing Bending ±2%

Wing Root Stress ±250 psi

RESULTS AND DISCUSSION

The discussion presented herein will be limited to a few cases which are

considered generally representative of the trends for the various configura-

tions tested. Comparisons with wind tunnel results are also included for the

15°/-4 ° winglet cant/incidence configuration.
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In figure 7, flight and wind tunnel pressure coefficient data are

presented for the basic wing tip configuration. In general, the comparisons

show good agreement at all four wing span stations, Mach numbers, and angles of

attack. Some small differences do exist at some locations and test conditions

which, in part, could be attributed to the airplane surface conditions and

externally mounted orifices.

Figure 8 presents flight and wind tunnel wing and winglet pressure distri-

butions comparisons for the 15 ° cant/-4 ° incidence winglet configuration. The

wing pressure distributions comparisons, in general, show good agreement at all

span stations and test conditions, while the winglet data have some significant

differences. At semispan station 1.01 the main differences between flight and

wind tunnel occur on the upper surface near the leading edge at all test condi-

tions. These large differences at the leading edge are attributed to "oilcan-

ning" (skin deflections) which occurred in flight. Observations of the "oil-

canning" during flight showed that the existence of a large "oilcan" occurred

in this region. A photograph of the "oilcanning" on the left winglet is shown

in figure 9.

At semispan stations 1.03 and 1.05 the winglet flight and wind tunnel data

in figure 8 generally show good agreement for the lower surface while the

flight upper surface data tend to be more positive on the forward chord regions

and more negative on the aft portion. These differences are in part attributed

to the "oilcanning"; however, the trends and levels show good agreement.

In figure I0, flight wing pressure distributions for the basic wing tip

and with the 15 ° cant/-4 ° incidence winglet configuration are presented. The

data show that at all test conditions the effects of the winglet on the wing

pressure distributions are mainly at the wing tip upper surface (semispan sta-

tion 0.99). At this span station, the wing upper surface pressure distribu-

tions with the winglet tend to be more negative on the aft region with good

trailing edge pressure recovery. The more negative pressure coefficients begin

at about X/C = 0.4 which is where the winglet leading edge intersects the wing

upper surface. These results are similar to those predicted by the wind tunnel

data of reference 5. The other wing semispan stations (0.26, 0.77, and 0.92)

along with the lower surface of semispan station 0.99 in general do not show

significant effects due to the winglet.

Figure ii presents wing tip and winglet pressure distribution comparisons

for the 15°/-4 ° , 15°/-2 ° , and 0°/-4 ° winglet cant/incident configurations. The

wing tip data (_ - 0.99) in general show good agreement except for the 15 °

cant/-2 ° incidence data which have slightly more negative coefficients on the

upper surface at the higher Mach numbers.

The winglet pressure distributions in figure ii show that 15°/-4 ° and

0°/-4 ° data generally agree while the 15°/-2 ° data tend to be more negative on

forward portion of the upper surface and more positive on the lower surface.

This indicates that for the test conditions presented, the winglet incidence

had a stronger effect on the pressure distribution than did cant.

Wing and winglet flight and wind tunnel span load distributions for the

15 ° cant/-4 ° incidence winglet configuration are presented in figure 12. Some

differences exist at some of the test conditions presented. These differences

are due to the airplane surface conditions; i.e., externally mounted pressure

52



tubing for the wing flight data and winglet "oilcanning," and the method used

in the model construction to get the proper outboard wing deflections. With

the above taken into account, agreement is considered good.

Figure 13 presents schematics of both the construction method used in the

semispan model of reference 5, to get the predicted w_ng tip deflections along

with the type of deflections which would be expected in actual flight and from

the model. As is shown, the model deflections occur primarily outboard of the

fill area while the actual flight deflections occur more uniformly throughout

the span; although the total wing tip deflection may be similar. Therefore the

wing span loads as shown in figure 12 _ay differ due to this effect.

Flight and wind tunnel measured deflections at the design cruise Mach num-

ber of 0.78 are compared in figure 14 for the winglets off and 15 ° cant/-4 °

incidence configurations. Because of the different reference planes, compari-

sons of absolute deflection cannot be made. However, comparing the incremental

deflection from winglets off to 15 ° cant/-4 ° incidence at a given CL, the wind

tunnel and flight data are fairly close. The increment for the flight data

appears to be slightly higher than the wind tunnel increment. From this and

other data, the overall assessment is that the flexible wind tunnel model did a

reasonable job of simulating the aeroelastic effects at the wing tip where it

is important to get the winglet in the right environment.

The overall character of the winglet loading is shown in figure 15 where

the center of pressure location outboard of the load station is plotted for the

15°/-2 ° and 15°/-4 ° configurations. The data were obtained from ±0.5g roller

coaster maneuvers performed at the 0.78 design Mach number. Of particular note

is the fairly aft chordwise locations, especially at the lower angle-of-attack

points.

The effective center of pressure location for the total outboard wing

loads is shown in figure 16 for the same maneuvers. The load penalty at this

station for both winglet configurations is quite evident from the outboard

shift in center of pressure. It is also interesting to note that for all three

configurations the chordwise center of pressure remains virtually unchanged,

with the data centering around the elastic (torque) axis.

In figure 17 the flight measured winglet intersection bending moment, as a

function of airplane normal force coefficient, is compared with Boeing aero-

elastic prediction data at the design test condition. The airload at ig for

the 15 ° cant/-2 ° incidence winglet configuration is about 34 percent higher

than the 15°/-4 ° configuration, indicating the desirability of the 15°/-4 ° con-

figuration. A comparison of the flight data with the predicted data shows good

agreement at the ig condition, but predictions are somewhat higher than flight

data at the 1.5g condition.

The flight measured bending moment at the outboard wing station, as a

function of airplane normal force coefficient, is shown in figure 18 for the

design test condition. At Ig, the 15 ° cant/-4 ° incidence configuration shows a

32 percent increase in airload over the basic wing while the 15°/-2 ° configura-

tion exceeds the basic wing by 50 percent. Comparison between the measured

flight loads and the Boeing predicted data is considered quite good at both ig

and 1.5g.
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The flight measured bending stress distribution at the wing root station

is shown in figure 19 for the design cruise condition at Ig. As predicted from

the flexible wind tunnel tests, the flight data for the 15 ° cant/-4 ° incidence

winglet configuration show only a slight increase compared to the basic wing

without winglets. The average stress increment is approximately 2.5 percent.

SUMMARY OF RESULTS

A full scale winglet flight program on a KC-135 airplane with an upper

winglet was conducted. An analysis of selected wing and winglet pressure dis-

tribution data for the basic wing tip, 15°/-4 ° , 15°/-2 ° , and 0o/-4 ° winglet

cant/incident configurations indicated the following:

I. The flight wing pressure distributions with the basic tip in general

showed good agreement with the wind tunnel data.

2. Winglet configuration effects on the wing pressure distribution were

mainly near the wing tip. The winglet made the aft upper surface

pressure distributions more negative.

3. The flight and wind tunnel winglet pressure distributions had some

significant differences primarily due to the "oilcanning" (skin

deflections) in flight; however, in general the agreement was good.

4. For the winglet cant and incidence configurations presented the inci-

dence had the largest effect on the winglet pressure distributions.

Also, the loads and deflection data showed the following:

5. 'The incremental flight wing deflection data showed that the semispan

wind tunnel model did a reasonable job of simulating the aeroelastic

effects at the wing tip.

6. At the design conditions the flight loads agreed with predictions.

7. The flight loads substantiated the predicted structural penalty (load

increase) of the 15 ° cant/-2 ° incidence winglet configuration.
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TABLE I. - COORDINATES OF TYPICAL OUTBOARD WING SECTION

Wing Section at 2 ° Incidence

Upper Surface Lower Surface

x/c z/c x/c z/c

0

.0011

.0022

.0034

•0058

.0095

.0132

.0180

.0234

.0324

.0415

.0536

.0716

.0897

.0990

.1132

.1408

.1589

.1740

.1861

.2011

.2192

.2342

.2584

.3432

.3729

.4090

.4572

.5054

.5416

.6379

.6862

.7343

.7582

.7823

.8040

.8344

•8642

.8874

.9223

.9492

.9718

.9920

1.0001

.0042

.0056

.0071

.0090

.0116

.0136

.0161

.0186

.0221

.0253

.0291

.0338

.0377

.0394

.0417

.0454

.0471

.0483

.0492

.0501

.0510

.0516

.0522

.0522

.0524

.0513

.0489

.0454

.0420

.0304

.0226

.0513

.0108

.0065

.0027

-.0023

-.0076

-.0119

-.0810

-.0229

-.0269

-.0308

-•0347

0

.0020

.0035

.0061

.0092

.0201

.0391

.0631

.0950

.1016

.1445

.1826

.2235

.2597

.2950

.3326

.3726

.4276

.4690

.5110

.5560

.5967

.6386

.6818

.7243

.7620

.7951

.8308

.8662

.9029

.9790

.9999

0

-.0054

-.0063

-•0073

-.0081

-.0097

-•0116

-.0139

-.0168

-•0174

-•0212

-•0245

-•0284

-.0314

-•0341

-•0366

-.0391

-.0418

-•0429

-.0433

-.0430

-.0424

-•0414

-.0406

-.0397

-•0389

-•0381

-.0377

-.0371

-.0363

-.0348

-.0350
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TABLE II. - AIRFOIL COORDINATES FOR WINGLETS

x/c

0

.0020

.0050

.0125

.0250

.0375

.0500

.0750

.i000

.1250

.1500

.1750

.2000

.2500

.3000

.3500

.4000

.4500

.5000

.5500

.5750

.6000

.6250

.6500

.6750

.7000

.7250

.7500

.7750

.8000

.8250

.8500

.8750

.9000

.9250

.9500

.9750

1.0000

z/c for-

Upper Surface

0

.0077

.0119

.0179

.0249

.0296

.0333

.0389

.0433

.0469

.0499

.0525

.0547

.0581

.0605

.0621

.0628

.0627

.0618

.0599

.0587

.0572

.0554

.0533

.0508

.0481

.0451

.0419

.0384

.0349

.0311

.0270

.0228

.0184

.0138

.0089

.0038

-.0020

Lower Surface

0

-.0032

-.0041

-.0060

-.0077

-.0090

-.0100

-.0118

-.0132

-.0144

-.0154

-.0161

-.0167

-.0175

-.0175

-.0174

-.0168

-.0158

-.0144

-.0122

-.0106

-.0090

-.0071

-.0053

-.0033

-.0015

.0004

.0020

.0036

.0049

.0060

.0065

.0064

.0059

.0045

.0021

-.0013

-.0067
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Figure 2. - Typical outboard wing airfoil section
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Figure 3. - KC-135 winglet geometry
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IN-FLIGHT LIFT AND DRAG MEASUREMENTS

ON A FIRST GENERATION JET TRANSPORT

EQUIPPED WITH WINGLETS

David P. Lux

NASA Dryden Flight Research Center

SUMMARY

NASA in a joint project with the USAF flight tested a KC-135A aircraft

equipped with wing tip winglets to demonstrate and validate the potential per-

formance gain of the winglet concept as predicted from analytical and wind

tunnel data. Flight data were obtained at cruise conditions for Mach numbers

of 0.70, 0.75, and 0.80 at a nominal altitude of 36,000 ft. and winglet config-

urations of 15 ° cant/-4 ° incidence, 0 ° cant/-4 ° incidence, and baseline.

For the Mach numbers tested the data show that the addition of winglets

did not affect the lifting characteristics of the wing. However, both winglet

configurations showed a drag reduction over the baseline configuration, with

the best winglet configuration being the 15 ° cant/-4 ° incidence configuration.

This drag reduction due to winglets also increased with increasing lift
coefficient.

It was also shown that a small difference (AC D = 0.00045) exists between

the 15 ° cant/-4 ° incidence flight and wind tunnel predicted _mta. This differ-

ence was attributed to the pillowing of the winglet skins in flight which

would decrease the winglet performance.

INTRODUCTION

With the advent of the 1973 fuel crisis, the fuel efficiency of transport

type aircraft has become of paramount importance to all operators of this type

of aircraft, including the Federal Government. To improve the fuel efficiency

of these aircraft, Dr. Richard T. Whitcomb developed wing tip mounted winglets

which reduce the drag of the wing lifting system. Many analytical studies and

wind tunnel tests have been conducted (references i, 2, 3), to show the

decreased drag of the wing/winglet system and it was determined that a flight

evaluation of this concept was in order. Therefore, the USAF, in a joint

project with NASA, contracted for the design and fabrication of winglets to be

attached to a KC-135A aircraft as shown in figure I.

The objective of the NASA/USAF flight project was to demonstrate the

incremental performance gains, predicted from analytical and wind tunnel

studies, by installing winglets on an aircraft without degrading aircraft

stability. This was accomplished by making measurements to obtain lift, drag

and pressure distributions on both right wing and winglet, and to obtain fuel

mileage data.

This report presents the lift and drag data for a Mach number range of

0.70 to 0.80 for the cruise flight condition at one altitude (36,000 feet nomi-

nal). Angle of attack and lift coefficient were varied by varying weight

(fuel burn). The aircraft center of gravity was maintained at 25% mean
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aerodynamicchord. Flights were madewith winglets off (baseline) and winglets
on for several cant and incidence conditions. The data presented in this

report are for the baseline, 0 ° cant/-4 ° incidence, and 15 ° cant/-4 ° incidence.
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SYMBOLS

2
Area of Engine Inlet Duct, ft

Area of Engine Nozzle, ft 2

Longitudinal Acceleration, g

Normal Acceleration, g

Mean Aerodynamic Chord

Drag
Drag Coefficient,

qs

Nozzle Efficiency Coefficient

Lift
Lift Coefficient,

qs

Gross Thrust, ibs

Ram Drag, ibs

Freestream Mach Number

Inlet Duct Mach Number

Total Pressure, psi

Static Pressure, psi

Free Stream Static Pressure, psi

2
Dynamic Pressure 0.7M P , psf

8

Wing Reference Area, ft 2

Aircraft Gross Weight, Ib

Indicated Angle of Attack, deg

True Angle of Attack, deg

Ambient Pressure Ratio

Ratio of Specific Heats
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DESCRIPTIONOFTESTAIRCRAFT

The test aircraft used for this study was a KC-135Aaerial refueling
tanker modified to allow the installation of wing tip mountedwinglets. Also,
an air data boomwas addedwith provisions for measuring free stream impact
pressure, static pressure, angle of attack, and angle of sideslip. Incorpo-
rated into the angle of attack and sideslip vanes were flight path acceler-
ometers; however, these were not used in this study.

The configuration of the winglets, as tested in this study, is shownin
figure 2. The winglets, as manufactured by the Boeing Military Aircraft
Company(BMAC),were constructed to accommodatechanging the angle of cant and
incidence on the ground. This allowed flight testing to determine the optimum
winglet configuration.

FLIGHTTESTINSTRUMENTATION

In order to obtain the necessary parameters to allow calculation of lift
and drag, the KC-135aircraft had to be instrumented to accurately obtain air-
craft weight, thrust, angle of attack, freestream impact and static pressures,
and normal and longitudinal accelerations.

Each of the four engines' inlet ducts was instrumented to measure total
pressure (Pt2) and static pressure (Ps2) for determining inlet momentumand

with total pressure probes after the turbine (Pt7) to obtain gross thrust. As

can be seen from figure 3, engine i and 2 used inlet rakes to obtain Pt2 while
engines 3 and 4 used two Pt2 probes. All of the engine pressures were measured
using differential pressure transducers located in the aircraft cabin. These
transducers were all referenced to a single reference pressure taken from a Pt2
probe of engine 2. This reference pressure was measured by a very accurate

absolute pressure transducer also located in the aircraft cabin.

Other instrumentation pertinent to the engines were fuel flow meters

located in the fuel supply lines of all the engines to enable aircraft weight

to be determined and instrumentation of the engine bleed doors. For all test

points the engine bleed doors were closed.

As previously mentioned, an air data noseboom was installed on the flight

test aircraft. The angle of attack that was used in this study was taken from

the angle-of-attack vanes mounted on the noseboom. Freestream impact and

static pressures were obtained from the noseboom pitot-static system. This

system is described in detail in reference 4.

Normal and longitudinal accelerations were obtained from accelerometers

mounted at the aircraft center of gravity. Alignment of this accelerometer

package was checked periodically throughout the flight test program to ensure

that the accelerometer mount plate was not shifting from flight to flight.

Other parameters that were measured which concern this study were ambient

air temperature, engine rotor speeds, and all control surface deflections.
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All data parameters were recorded through a pulse code modulation (PCM)

system onto magnetic tape. In postflight processing the magnetic flight tape

was formatted and processed to allow follow-on data programs to access the data

and perform all pertinent calculations.

FLIGHT TEST PROCEDURE

Of all the tasks that were to be flown during the flight test, by far the

most difficult task was to obtain good fuel mileage data. Since these data

were of primary concern to the USAF, the requirements for this task dictated

the manner in which the lift and drag task were to be performed. A discussion

of how the data points were obtained and the manner in which the data was

reduced follows.

Data were obtained at Mach numbers of 0.70, 0.75, 0.78, and 0.80 at three

W/6 conditions for each winglet configuration. By varying W/6 it was possible

to obtain a C L range that was representative of the aircraft envelope. For

each data point the aircraft was flown to the desired Mach number and altitude

to obtain the proper W/6. This condition would be held for a minimum of

three minutes. An onboard flight test engineer would determine if the

aircraft/airmass was stable enough during the data run for the run to be

acceptable. If not, the data run would be repeated. It was found that in

most cases where the data runs were deemed unacceptable for fuel mileage data,

the data was most adequate for lift and drag data.

One of the critical aspects of the flight program was the stability of the

airmass required for data acquisition. Many times this required that the mis-

sion be flown at extreme distances from Base precluding real time ground moni-

toring of flight parameters. As a result a real time onboard computation

capability was provided to allow both monitoring of instrumentation and compu-

tation of aircraft weight.

Throughout any given flight, a crew member would monitor the fuel status

of the aircraft. Fuel would be transferred either forward or aft to maintain

the aircraft's center of gravity at 25% _. The accuracy to which this could

be maintained is about ±1%.

LIFT/DRAG DATA REDUCTION

The following are the equations for C L and C D used in this investigation:

[w ]C L (A cos _ + A sin _ ) - F sinz t x t g t

and

r]CD (A sin _ - A cos e ) + F cos _ - Fz t x t g t

These equations and their derivations can be found in reference 5. From

these equations it can be seen that the important parameters are weight,
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dynamic pressure, gross thrust and ram drag, longitudinal and normal
accelerations, and true angle of attack. Each of these will be briefly dis-
cussed below.

Aircraft weight was determined by fueling and weighing the aircraft and
crew prior to flight. From engine start to engine shutdown fuel flow meters
on each engine supplied the information necessary to allow the integration of
the fuel weight burned, which determined the weight of the aircraft at any
given time. This calculation was checkedafter each flight by a postflight
weighing of the aircraft.

Thrust and ram drag of the aircraft were determined from total and static
pressures in the inlet duct and total pressures after the engine turbine. A
very simple method of calculating thrust and ram drag was used for this
investigation since the real interest was the incremental performance of wing-
lets over a baseline configuration. For this investigation the following

equations were used to determine gross thrust and ram drag per engine.

Fg = AeC f (y+l) Pt7 - P = CfA e .

259
P

t 7

where y is taken to be 1.33. Cf is the nozzle efficiency coefficient and is

obtained from thrust stand runs. Cf for this investigation is shown in

figure 4.

F
r I_ + 0"2 Md2 _--1 A  dPs2 /+ 0.2 M 2

where

M d = 2.236 -_2\PtJ1
1/2

For a more indepth discussion of this technique of determining Fg and F r
see reference 6.

Longitudinal and normal accelerations were obtained from the center of

gravity accelerometer package. The accelerometer package consisted of a

-l.0/+3g normal accelerometer, -l.0/+l.0g longitudinal accelerometer, and a

±0.25g sensitive longitudinal accelerometer. When longitudinal accelerations

were small the sensitive longitudinal accelerometer was used in the lift, drag

calculations. All accelerometers were filtered at 3 hertz.

True angle of attack proved the most difficult parameter to determine.

The KC-135 is a large, flexible aircraft and the angle of attack as measured
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from the noseboomvanes and the c.g. accelerometers changeswith changing
flight conditions. Since all data points during this study were to be taken

at Ig cruise conditions it was felt that the best method of determining true

angle of attack was to calibrate e in flight by relating true _ to the longi-

tudinal accelerometer by the expression

-i
= sin A

t x

Indicated angle of attack was plotted against s t for each flight and a

polynormal regression curve fit was made of this data (figure 5). This curve

then became the calibration of angle of attack. It should be noted that this

curve takes into account upwash effects, noseboom misalignment, and fuselage

deflection effects. This is true only because the data was flown at cruise

conditions, i.e. ig stabilized flight.

RESULTS AND DISCUSSION

The effect of the addition of winglets on the KC-135 aircraft aerodynamic

parameters can be seen in figure 6 as lift coefficient versus angle of attack

and lift coefficient versus drag coefficient.

The addition of winglets had little or no effect upon the C L vs _ curve

for either the 15/-4 or 0/-4 configuration. This was anticipated since the

wind tunnel data of reference 1 also predicted little or no effect on CL_
with the addition of winglets.

The addition of winglets, however, did affect the drag data as seen in

figure 6. For every Mach number and lift coefficient tested, the addition of

winglets to the aircraft reduced the total aircraft drag. Also the 15/-4 con-

figuration is seen to be more effective at reducing the drag than the 0/-4

configuration for all Mach numbers and lift coefficients. This also was

anticipated as a result of the wind tunnel tests which showed the 15/-4 con-

figuration to be the optimum winglet configuration for the KC-135 aircraft.

Figure 7 shows the drag increment, ACD, plotted versus lift coefficient

for each of the test Mach numbers. These data were obtained by computing the

difference in C D at a given C L between the baseline data fairing and the fair-

ing of the 15/-4 and 0/-4 data. These data show that the C D reduction due to

winglets increases with increasing lift coefficient for both winglet configura-

tions. Also, the 15/-4 configuration is increasingly more effective in reduc-

ing drag than is the 0/-4 configuration, as C L is increased. The data also

show that, for the most part, the effect of the winglets is independent of

Mach number for the small range of Mach numbers tested. (M = 0.70 to 0.80.)

Also shown in figure 7 as the dashed line is the wind tunnel predicted

decrease in drag due to winglets for the 15/-4 configuration at a Mach number

of 0.78. These data were taken from Langley test 754 and do not incorporate

corrections for Reynolds number and trim drag which were considered to be

small. The wind tunnel data show a decrease of approximately 0.00045 C D more

than the flight data over the entire C L range. There are several factors that

could contribute to the miscomparison of the two sets of data, such as model
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aeroelasticity, as compared to the flight vehicle, or angle of attack

definition. However, the single most probable cause would be the existence of

winglet skin pillowing as shown in figure 8. This pillowing, caused by a

structural deficiency of the skin, would increase the drag of the winglet and

not allow it to perform as predicted in the wind tunnel data. Further discus-

sion of the effect of the winglet skin pillowing on the winglet performance

can be found in reference 7.

CONCLUDING REMARKS

NASA in a joint project with the USAF flight tested a KC-135A aircraft

equipped with wing tip winglets to demonstrate and validate the potential per-

formance gain of the winglet concept as predicted from analytical and wind

tunnel data. Flight data were obtained at cruise conditions for Mach numbers

of 0.70, 0.75, 0.78, and 0.80 at a nominal altitude of 36,000 ft and winglet

configurations of 15/-4, 0/-4 and baseline. The data show the following:

• No change was observed in the lift curve slope between the baseline

(winglets off) configuration and winglets on configuration at any Mach
number tested.

• Both the 15/-4 and 0/-4 winglet configuration reduced the airplane drag

as compared with the baseline configuration for all Mach numbers and

lift coefficients tested. The 15/-4 configuration had the highest drag
reduction.

• The drag reduction due to winglets increased with increasing C L and

appeared to be independent of Mach number for the Mach number range
tested.

Also observed was that the 15/-4 flight data and wind tunnel predicted CD

reduction disagreed by a small amount (AC D = 0.00045). This difference was

attributed to pillowing of the winglet skins in flight which would decrease

winglet performance.
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MEASUREMENTS OF THE FUEL MILEAGE

OF A KC-135 AIRCRAFT WITH AND

WITHOUT WINGLETS

Gary E. Temanson

Boeing Military Airplane Company

S UMMARY

The KC-135A Winglet Flight Research and Demonstration Program was a joint

effort of the Air Force, NASA and the Boeing Military Airplane Company to flight

test winglets on the KC-135A. The primary objective of the program was to ver-

ify the cruise performance improvements predicted by analysis and wind tunnel

tests. Flight test data were obtained for winglets positioned at 15 ° cant/-2 °

incidence, 0 ° cant/-4 ° incidence, 15 ° cant/-4 ° incidence and for winglets off

(baseline). Both fuel mileage and drag measurements were obtained.

The 15 ° cant/-4 ° incidence winglet configuration provided the greatest per-

formance improvement. The flight test measured fuel mileage improvement for a

0.78 Mach number was 3.1 percent at 8x 105 pounds W/6 and 5.5 percent at

1.05 x 106 pounds W/6. Correcting the flight measured data for surface pres-

sure differences between wind tunnel and flight resulted in a fuel mileage

improvement of 4.4 percent at 8 x 105 pounds W/6 and 7.2 percent at 1.05 x 106

pounds W/6. The agreement between the fuel mileage and drag data was excellent.

INTRODUCTION

Analytical and experimental investigation indicated that a significant

drag reduction could be realized on large transport aircraft through the incor-

poration of winglets. Winglets were projected to reduce the KC-135's cruise

drag between 6 and 8 percent, which translates into a significant fuel savings

for the KC-135 fleet. As a result the KC-135 Winglet Flight Research and

Demonstration Program was developed to design, fabricate and flight test a set

of winglets to verify the cruise performance improvement predicted by analysis

and by wind tunnel tests (references 1 through 6). Three specific areas of per-

formance were investigated:

• Fuel mileage performance obtained from fuel flow and airspeed

measurements.

• Drag determined from engine thrust measurements.

• Pressure distributions on the wing and winglet.

This paper discusses the cruise performance testing and results obtained

from the first two areas of investigation. The pressure distributions are dis-

cussed in reference 7. A detailed analysis of the final results of the overall

program is presented in reference 8.
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SYMBOLS

Inlet Duct Area

Jet Nozzle Area

Altitude

Longitudinal Acceleration in g's

Normal Acceleration in g's

Drag Coefficient

Lift Coefficient

Jet Nozzle Coefficient

Correction Factor

Drag

Gross Thrust

Fuel Mileage

Ram Drag

Energy Altitude

Pressure Altitude

Inertial Navigation System

Knots Calibrated Airspeed

Constant

Constant

Lift

Lower Heating Value

Mach Number

Duct Mach Number

Nautical Air'Miles

Ambient Pressure at Tailpipe Exit
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Fuel Flow
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Ambient Pressure Ratio

Increment

Ambient Temperature Ratio

FLIGHT TEST PROGRAM OVERVIEW

The test airplane was a KC-135 S/N 55-3129, on loan to NASA Dryden Flight

Research Center from the 4950th Air Force Test Wing (figure i). The external

aerodynamic configuration of the basic airplane was that of a standard KC-135A,

except that the refueling boom had been removed and an airspeed nose boom with

angle of attack and angle of sideslip vanes had been installed. Since the goal

of the testing was to determine the incremental benefit of winglets, the data

reduction methods did not attempt to correct the data to a standard airplane

configuration.

The flight test winglets were designed to provide for variation of winglet

cant and incidence as well as for removal of the winglet to obtain baseline

data. Figure 2 presents the general winglet geometry.

The performance testing was conducted at Edwards Air Force Base, Edwards,

California. The testing occurred in two time segments beginning in August 1979

and July 1980, respectively.
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The first series of tests were flown in the proximity of the EdwardsAir
Force Base complex in order that the test data could be telemetered to NASA's

ground station for real time monitoring. Data were obtained for three

configurations:

• Winglets on, 15 ° cant/-2 ° incidence

• Winglets on, 15 ° cant/-4 ° incidence

• Winglets off, baseline

Several attempts were made to obtain data with the winglets set at 0 °

cant/-4 ° incidence. However, the persistent fuel leaks and the discovery of

the cracked wing spar chord aborted these attempts during the preliminary

testing.

Data scatter and instrumentation problems were prevalent during the pre-

liminary testing. The scatter in the fuel mileage data masked the performance

increment. A review of the fuel flow data used in determining fuel mileage

indicated that scanivalve operation created electrical noise and bias in the

fuel flow instrumentation which resulted in erroneous fuel flow indications.

Isolating the fuel flow instrumentation on separate power supplies eliminated

the scanivalve interference. The fuel flow instrumentation was also modified

to provide better ranging over the cruise fuel flows. During airplane down-

time between the two time segments it was decided that the criteria for deter-

mining stabilized flight should be clearly specified and more strictly adhered

to when flying resumed. The following criteria were decided on:

Parameter

Maximum Allowable Change

During Three-Minute Run

Altitude

Ambient Air Temperature

Mach Number (Airspeed)

True Airspeed

±80 ft

±0.5°C

±0.004 (±1.5 KCAS)

±2 kts

±5,000 ib from Nominal

Testing was accomplished for three nominal W/6's(8 X 105 , 9 x 105 and

1.05 x 106 Ib) throughout the range of Mach numbers from 0.70 to 0.82. Data

were obtained during three minute stabilized runs at altitudes between 34,000

and 40,000 ft.

In order to find and test in stable air masses, the airplane was equipped

with an onboard real time data monitoring computer. This eliminated the need

for the ground station real time monitoring and allowed the airplane to leave

the Edwards Air Force Base area in search of smooth stable air. The final

testing was flown over the ocean, off the coast of southern California.

An inertial navigation system (INS) was installed on the airplane during

the final tests and was operational from flight 31-42 to the completion of

testing. The INS facilitated navigation and also furnished information on

ground speed through a digital cockpit display.
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Final performance data were acquired for the following configurations:
• Winglets on, 0 ° cant/-4 ° incidence

• Winglets on, 15 ° cant/-4 ° incidence

• Baseline

Table 1 lists the successful data flights and the type of performance

data obtained for each flight test segment.

RESULTS AND DISCUSSION

Fuel Mileage

The basic parameters required to determine the cruise performance of an

airplane at a given Mach number and gross weight are true airspeed (VT), fuel

flow (Wf) and ambient pressure ratio (6). Normalized fuel mileage (FM) is

obtained by combining these parameters in the following equation:

FMTest =

V T x 6 x I000

wf

The FM test value for a given condition was based on the average value of

these parameters over the stabilized condition time. Each parameter was

sampled every second over a nominal three minute time period.

The test fuel mileage was then corrected to standard conditions so that a

valid comparison could be made among configurations. Differences in drag (off

W/6 and changing energy state), fuel lower heating values and altitudes were

normalized by means of correction factors applied to the test FM:

FMcorr = FMTest x CFDrag x CFLH V x CFAI t

The drag correction factor had two components: off, W/_ and changing

energy state.

The off W/_ correction occurs when the data are not obtained at exactly

the targeted W/6. This results in the airplane operating at a different C L

than desired and thus a different C D as illustrated in figure 3. The increment

of drag associated with returning to the nominal W/6 is:

The basic KC-135A drag polars (reference 9) were used to determine the

W/6 correction for all test configurations.

The changing energy state correction occurs when the airplane is in accel-

erated, climbing or descending flight during the test condition. At any given

point in time the airplane's energy state is described by its energy altitude

(H e ) which is the sum of the airplane's geopotential altitude and its speed
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converted to an equivalent geopotential altitude. _n increase in He over the
condition time indicates that the airplane is accelerating and that the engines
are producing more thrust than is required to balance the drag force. A
decrease in He indicates less thrust is being produced than that required to
balance drag. Since level unaccelerated flight performance where thrust equals
drag is desired, a correction for any energy state change must be applied. The

time rate of change of H e is related to drag by the following equation:

i dHeAD a______gH = -0. 592484 x W/6 x V_T x d--_-
e

When determining H e , the reference for the airplane speed and for the

geopotential altitude should be the earth. Therefore, airplane ground speed

(Vg) is the relevant speed. However, ground speed measurements were not

available until late in the program (Flight No. 31-42 and on) when an inertial

navigation system was installed in the airplane. In a stable air mass with

no wind or horizontal temperature gradients, changes in true airspeed are the

same as changes in ground speed. Therefore, true airspeed was used in deter-

mining H e .

On those flights where the INS was installed, an energy correction was

also determined using the hand-recorded ground speed from the digital cockpit

display. The energy correction was determined based on the following

relationship.

"m g
= x W16 x dtINS

The altitude change during a test run was minimized by the use of the alti-

tude hold function on the autopilot. The altitude excursions experienced during

the testing were negligible, and no corrections were applied in the calculation

of the INS drag correction.

The relationship between the airplane drag at the nominal W/_ in level

unaccelerated flight and the drag of the airplane under the test conditions is

given by the following equation:

( ) est +( )Energ 
Changes

where

Energy
Changes

or( )He
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Differences between drag for the nominal and test conditions result in
different thrust requirements which may cause a change in the specific fuel

consumption (TSFC//_). The drag correction factors applied to the test fuel

mileage accounts for both the difference in thrust levels and specific fuel

consumption in the following manner:

 est( > est
xNominal _---_- J Nominal

The variation of specific fuel consumption with thrust was obtained from

the basic engine data contained in reference i0.

The energy content of JP-4 fuel, as measured by the lower heating value,

can vary from flight to flight because of differences in such items as

sources, shipments, contaminates and seasonal additives. Therefore, a fuel

sample was obtained from the airplane fuel tanks before each flight. The

samples were analyzed to determine the lower heating value. The test fuel

mileage data were then corrected to a standard fuel energy level of

18,400 BTU/Ib by applying the following correction factor:

18,400

CFLH v = LHVTes t

Cruise performance testing was conducted between 34,000 ft and 40,000 ft

pressure altitude. The specific fuel consumption for a given F /_ varies with

altitude in this altitude test range. For comparison purposes The cruise data

were corrected to a standard altitude of 36,000 ft by applying the following

correction factor:

CFA1 t =

ITSFC

\--_--} Test Altitude

J 36,000 ft

The specific fuel consumption variation with altitude was obtained from

the KC-135A engine data presented in reference i0.

The corrected fuel mileage was obtained by applying the three preceding

correction factors to the fuel mileage measured under the test conditions:

FMcorr = FMTest x CFDrag x CFLH v x CFA1 t
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Normalized fuel mileage obtained using the airspeed/altitude method for
the baseline configuration, the winglets on 15° cant/-4 ° incidence configuration
and the winglets on 0° cant/-4 ° incidence configuration, are presented in fig-

ures 4, 5 and 6, respectively. These data were all obtained during the second

segment of the flight test program. The cruise mileage data obtained during the

preliminary testing were discarded because of extreme data scatter caused by

instrumentation problems and relaxed stability criteria as previously discussed.

Figure 7 compares the faired cruise mileage performance associated with

each winglet configuration. This improvement is a function of W/6 and Mach

number. Figure 8 compares the percentage improvement of both winglet configura-

tions at 0.78 Mach number. As predicted, the 15 ° cant/-4 ° incidence winglet

configuration resulted in the better performance gain.

The baseline and 00/-4 ° winglet data exhibit good repeatability between

flights and minimal data scatter. However, the 15°/-4 ° winglet data exhibits

almost twice the scatter, particularly at 9 x 105 ib W/6. All of these data

were corrected using the airspeed/altitude energy methods discussed previously.

A comparison of these energy corrections to the INS energy corrections for the

same test run revealed numerous discrepancies. These discrepancies are indica-

tive of an unstable air mass which would invalidate the assumption made in the

airspeed/altitude energy method, that changes in ground speed are reflected in

changes in the true airspeed. The INS energy corrected data for the baseline

and 15°/-4 ° winglets on configurations are shown in figures 9 and i0, respec-

tively. The scatter in the winglets on data was greatly reduced while the

scatter in the baseline data was not significantly affected. Since the INS pro-

vides a more accurate measure of the energy of the airplane, these data were

used in determining the 15°/-4 ° winglets on performance increments.

The percentage improvement in cruise mileage attributable to the flight

test 15°/-4 ° winglet configuration is presented as a function of W/6 and Mach

number in figure ii.

Drag

NASA-Dryden was responsible for the drag measurements. The NASA basic

approach is presented in reference Ii and is only outlined in this report for

the convenience of the reader. The lift and drag measurements dealt with two

primary areas:

• The thrust developed by the engines.

• The acceleration experienced by the airplane.

Gross thrust was determined from engine pressures measured during the test

condition, using the following relationship:

Fg = Cf Aj (1.259 Pt7 - PAmb )
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Ramdrag was subtracted from the gross thrust to arrive at the net thrust
used in the drag calculation. The gross thrust was resolved into the flight

path to be consistent with the drag direction. The relationship for ram drag
is:

_i + 0.2M 2
D

F R = 1.4 A D _D PS2 1 + 0.2 M 2

An accelerometer package was located at approximately the airplane center

of gravity to measure longitudinal and normal accelerations along the body axis.

These accelerations were resolved into the flight path axis system by rotation

through the angle of attack. The lift and drag were determined from these mea-

surements as follows:

_ 1 1 [W sin_)- F sins]CL qS qS (A Z cose + A x g

CD = D =lqs qS [W (Az sine - AX c°s_) + Fg c°se - FR]

The drag data were then corrected to the nominal W/6 as follows:

C D =C D + (ACD)
Corr Test W/_

This is the same drag correction discussed previously i n the Fuel Mileage

section which results from the test C L being different than the desired C L at

the test Mach number. The corrected drag is presented as a function of Mach

number in figures 12, 13, 14 and 15 for the baseline, 15 ° cant/-4 ° incidence,

15°/-2 ° incidence and 0 ° cant/-4 ° incidence configurations, respectively.

Both preliminary (solid triangles) and final (open symbols) drag data are

presented in figures 12 and 13 for the baseline and 15°/-4 ° configurations.

The preliminary data tends to exhibit higher drag levels as well as a slight

counterclockwise rotation of the drag polar. Contributing factors to these dif-

ferences include the limited amount of preliminary data, differing stability

criteria and varying angle of attack calibrations.

The quantity of data obtained for each configuration was very limited dur-

ing the preliminary tests. Only five data points per W/6 were obtained and only

one flight each was flown for the baseline and 15°/-4 ° configurations.

Due to excessive scatter in the preliminary fuel mileage data, the criteria

for determining when the airplane was stabilized were tightened as previously

noted. This minimized the size of corrections applied to the final data.

Although C L is not sensitive to small angle of attack changes, C D is highly

sensitive to such changes. This requires that the angle of attack instrumenta-

tion provide a repeatable nonshifting calibration with a high degree of
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resolution. Variations as small as 0.03 degree are significant since they
result i_ approximately a 1 percent change in airplane drag in the cruise
range. NASA'smethod of calibrating the angle of attack vane consisted of

applying the steady state relationship:

_cal = sin-lAx = KIWI + K2

A random scattering of energy corrections (accelerations�decelerations)

were assumed during the preliminary flight tests to determine K 1 and K 2.

Therefore, all of the data points were utilized in defining the linear rela-

tionship between indicated angle of attack (ei) and ecal" During the final

flight tests the data were screened to eliminate all points having accelera-

tions or decelerations resulting in over a 1 percent change in airplane drag.

A linear calibration was determined for each airplane configuration. Varia-

tions in calibrated angle of attack and indicated angle of attack of

0.i0 degree between configurations were common as shown in figure 16. Similar"

variations were noted when the data were compared from flight to flight for

the same configuration. Analytical studies of the influence of winglets on the

flow upwash at the angle of attack vane indicated a negligible effect. No

instrumentation changes were made to the angle of attack measurement system

between flights. Therefore, no change was expected in the _ calibration.

Apparently these variations are the result of limitations in instrumentation

accuracies. As a result, the data from all of the final data flights were

combined to arrive at a single calibration which was used to reduce the final

drag data.

No reason for the shift in the e calibration between the preliminary and

final testing was found. Since C D is so sensitive to changes in _, the pre-

liminary data were corrected using the final e calibration to eliminate any

bias. These data were also shown in figures 12, 13 and 14, (solid circles). A

2 to 3 percent drag reduction results from the _ calibration change. The pre-

liminary data now tends to exhibit lower drag levels than the final data. The

sensitivity of C D to _ changes is obvious.

Because of the uncertainties associated with the changing stability cri-

teria and the varying e calibration, as well as the limited data, the prelimi-

nary data were not utilized in the final data analysis.

Fuel mileage improvements were determined using the drag data and engine

specific fuel consumption data for each winglet configuration at 0.78 Mach num-

ber. Figure 17 compares this improvement to the measured fuel mileage benefit.

The airspeed/altitude energy corrected fuel mileage data was used for both wing-

let configurations in this comparison since INS corrected data was not avail-

able for the 0 ° cant/-4 ° incidence data. The drag and fuel mileage data

exhibited excellent agreement for the 15 ° cant/-4 ° incidence winglet configura-

tion. The drag based benefit for the 0 ° cant/-4 ° incidence configuration

showed a greater benefit than was measured by fuel mileage data. The agreement

was good at 1.05 x 106 ib W/6 but varied by 1.3 percent at 8 x 105 Ib W/6.

Figure 18 compares the 15 ° cant/-4 ° incidence data to the INS corrected

fuel mileage data. Again the agreement is excellent.
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The INS offers an alternative data correction method to the accelerometers.
The INS correction is not dependent on e, which eliminates the e sensitivity
problem. Using the INS, the drag equation becomes:

CD qS g -- INS x

The (ADrag/6)iNs was obtained from the INS ground speed changes recorded
during the test run as discussed in the Fuel Mileage section. INS data are
available for only four of the five baseline flights and the 15° cant/-4 °
incidence configuration flights. The INS corrected drag is presented in fig-
ures 19 and 20.

Fuel mileage improvementswere calculated based on the drag improvements
obtained from the INS corrected data and SFC improvements obtained from

reference I0. A comparison of this drag improvement to the directly measured

fuel mileage improvement is presented in figure 21. The drag based improve-

ment is 0.i percent to 0.5 percent higher than that shown by the measured fuel

mileage data. This is considered excellent agreement.

Flight Test - Wind Tunnel Data Comparison

The drag improvement determined from the flight tests was compared to

wind tunnel data obtained by NASA at their Langley facilities. The flight

test demonstrated benefit for winglets at 15 ° cant/-4 ° incidence was not as

great as the wind tunnel data indicated. Figure 22 presents the comparison

for a Mach number of 0.78 over the range of test W/6's. The excellent agree-

ment between the drag and fuel mileage test data gave confidence to the accu-

racy of flight test data. As a result, a careful comparison of wind tunnel

and flight test pressure data was made to ensure that the winglets were devel-

oping comparable loadings in flight. Differences in winglet loading were dis-

covered as shown in figure 23. A detailed analysis of these differences is

presented in reference 7.

The winglet pressure data were affected by the "pillowing" of the winglet

skin between the ribs which caused some distortions in the airfoil contour.

There was also a leading edge pressure loss on the lower inboard portion of

the winglet at test Mach numbers between 0.70 and 0.82 during flight testing

that was not observed during wind tunnel testing. The pressure loss only

occurred when the local flow in this area became supersonic. Two-dimensional

transonic flow analyses were used to verify that the leading edge pressure loss

was not caused by the "pillowing" of the winglet's skin. The difference is

attributed to the five percent chord trip strip used on the wind tunnel model.

Integration of the pressure drag differences on the winglet between wind tun-

nel and flight test resulted in a significant drag difference (approximately

1.5 to 2.0%) as shown in figure 24. Note that the drag data are shown plotted

against the section normal force at the outboard wing station instead of the

usual total airplane lift coefficient. This was done to compensate for any dif-

ferences in aeroelastic twist at the wing tip between the wind-tunnel model and

the flight test airplane. The relationship between airplane lift coefficient

and wing tip normal force coefficient for the flight test airplane is shown
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figure 25. Accounting for this difference resulted in the final flight test
fuel mileage improvements shownin figure 26. The corrected flight test fuel
mileage improvementis in good agreement with fuel mileage estimates obtained
from the wind tunnel test data as shownin figure 27.

CONCLUSIONS

The results of the cruise performance testing reveal a significant improve-
ment in fuel mileage associated with the installation of winglets on the
KC-135A. The 15° cant/-4 incidence winglet provided the greatest performance

improvement of the three test configurations. For a 0.78 Mach number the bene-

fit was approximately 4.4% at 8 x 105 ib W/6 and 7.2% at 1.05 x 106 ib W/6.
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Flight
No.*

10-21
11-22
12-23
14-25
16-27

24-35
27-38
28-39
30-41
31-42
32-43
33-44
34-45
35-46
36-47
37-48
38-49
40-51
41-52
42-53
44-55

TABLEi. - PERFORMANCEDATAFLIGHTTESTS

Configuration Date Data Obtained

Preliminary Data

15° cant/-2 ° incidence
15° cant/-2 ° incidence
15° cant/-2 ° incidence
15° cant/-4 ° incidence

Baseline

8-24-79

9-19-79

9-21-79

11-02-79

11-16-79

Final Data

0 ° cant/-4 ° incidence

0 ° cant/-4 ° incidence

0 ° cant/-4 ° incidence

Baseline

Baseline

Baseline

Baseline

Baseline

15 ° cant/-4 ° incidence

15 ° cant/-4 ° incidence

15 ° cant/-4 ° incidence

15 ° cant/-4 ° incidence

15 ° cant/-4 ° incidence

15 ° cant/-4 ° incidence

15 ° cant/-4 ° incidence

15 ° cant/-4 ° incidence

7-29-80

8-08-80

8-14-80

8-25-80

8-28-80

9-05-80

9-09-80

9-11-80

9-17-80

9-23-80

9-25-80

10-03-80

12-17-80

12-19-80

12-23-80

1-08-81

Drag, pressure

Drag, pressure

Drag, pressure

Drag, pressure

Drag, pressure

Fuel mileage, drag

Fuel mileage, drag

Fuel mileage, drag

Fuel mileage, drag

Fuel mileage, drag

Fuel mileage

Fuel mileage, drag

Fuel mileage, drag

Fuel mileage, drag

Fuel mileage, drag

Fuel mileage

Fuel mileage, drag

Fuel mileage, drag, pressure

Fuel mileage, drag, pressure

Fuel mileage, drag, pressure

Fuel mileage, drag, pressure

*The first two digits of the flight number refer to the number of data

flights and the last two digits refer to the cumulative number of

flights.
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Figure 5. - KC-135 winglet flight test, 15 ° cant/-4 ° incidence, Hp = 36,000 feet

airspeed/altitude energy correction

o FLIGHT 24-35. 7-29-80

FLIGHT 27-38, 8-8-80

[3 FLIGHT 28-39, 8-14-80

W16 - 0.8 x 106 LBS.

o/

W/6 - 0.9 x 106 LBS.

I I I I I I I [ I I L I [ .
.70 .72 .74 .16 .78 .80 .82

MACH NUMBER

Figure 6. - KC-135 winglet fiight test, O° cant/-4 ° incidence, Hp = 36,000 feet

airspeed/altitude energy correction
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Figure 7. - KC-135 flight test data, Hp = 36,000 feet

airspeed/altitude energy correction

8 -

>

ct_

0 I

0.7

150 CANT/-4 ° INCIDENCE

_%_00 CANTI-40 INCIDENCE

I I I I

0.8 0.9 1.0 1.1

W/6 - 106 LBS

Figure 8. - KC-135A winglet flight test, cruise mileage improvement,

airspeed/altitude energy correction mach = 0.78
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Figure 9. - KC-135A winglet flight test, baseline,
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Figure i0. - KC-135A winglet flight test, 15 ° cant/-4 ° incidence,

Hp = 36,000 ft., INS energy correction
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Figure II. - KC-135A winglet flight test, cruise mileage improvement,

winglet 15 ° cant/-4 ° incidence, INS energy correction
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Figure 13. - KC-135A winglet flight test, 15 ° cant/-4° incidence
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Figure 14. - KC-135A winglet flight test, 15 ° cant/-2° incidence
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Figure 15. - KC-135A winglet flight test, 0 ° cant, -4 ° incidence
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Figure 16. - Angle of attack comparison
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Figure 25
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COMPARISON OF FLIGHT MEASURED, PREDICTED AND

WIND TUNNEL MEASURED WINGLET CHARACTERISTICS

ON A KC-135 AIRCRAFT

Robert O. Dodson, Jr.

Boeing Military Airplane Company

SUMMARY

One of the objectives of the KC-135 Winglet Flight Research and

Demonstration Program was to obtain experimental flight test data to verify the

theoretical and wind tunnel winglet aerodynamic performance prediction methods.

Good agreement between analytic, wind tunnel and flight test performance was

obtained when the known differences between the tests and analyses were

accounted for. The flight test measured fuel mileage improvements for a

0.78 Mach number was 3.1 percent at 8 x 105 pounds W/6 and 5.5 percent at

1.05 x 106 pounds W/6. Correcting the flight measured data for surface pres-

sure differences between wind tunnel and flight resulted in a fuel mileage

improvement of 4.4 percent at 8 x 105 pounds W/6 and 7.2 percent at 1.05 x

106 pounds W/6 . The performance improvement obtained was within the wind tun-

nel test data obtained from two different wind tunnel models.

The buffet boundary data obtained for the baseline configuration was in

good agreement with previously established data. Buffet data for the 15 ° cant/

-4 ° incidence configuration showed a slight improvement, while the 15 ° cant/-2 °

incidence and 0 ° cant/-4 ° incidence data showed a slight deterioration.

INTRODUCTION

Analytical and experimental investigations from the references 1 through 6

studies indicated that a significant drag reduction could be realized on large

transport aircraft through the incorporation of winglets. Winglets were pro-

jected to reduce the KC-135 cruise drag between 6 and 8 percent, which trans-

lates into a significant fuel savings for the KC-135 fleet. This projected

cruise performance improvement resulted in the KC-135 Winglet Flight Research

and Demonstration Program. The primary objective of the program was to design,

fabricate and flight test a set of winglets to prove the fuel conserving attri-

butes of the winglet concept. A secondary objective was to obtain experi-

mental flight test data to verify the theoretical and wind tunnel winglet

aerodynamic performance prediction methods.

The Flight Research and Demonstration Program was a joint effort between

the Boeing Military Airplane Company (BMAC), the U.S. Air Force and NASA.

BMAC, under contract to the Flight Dynamics Laboratory (FDL), designed,

fabricated, ground tested and delivered a set of outboard wings and winglets,

which were flight tested by NASA-Dryden. The wind tunnel performance data and

the winglet external configuration description were provided by NASA-Langley.

The BMAC role throughout the flight test program was to provide engineering
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support and to promote understanding and confidence in the data being generated.
A detailed discussion of the final results of the program can be found in
references 7 and 8. Results presented in reference 9 discuss the analysis of
flight test fuel mileage and drag measurements. This report summarizesthe
results of the comparisons between flight-measured, predicted and wind tunnel-
measuredwinglet characteristics on the KC-135aircraft.
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SYMBOLS

Altitude

Wingspan

Chord Length

Drag Coefficient

Induced Drag Coefficient

Lift Coefficient

Sectional Lift Coefficient

Normal Force Coefficient

Yawing Moment Coefficient, Section Normal Force Coefficient

Pressure Coefficient
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Winglet Incidence Angle
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Mean Aerodynamic Chord
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Reynolds Number

Thrust Specific Fuel Consumption
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Y

Z

B

A

q

0

Gross Weight

Spanwise Distance Along Wing from B.L. = 0

Spanwise Distance from Winglet Root Measured in Winglet Chord

Plane, or Vertical Displacement

Angle of Attack

Body Angle of Attack

Angle of Sideslip

Ambient Pressure Ratio

Increment

Nondimensional Wing Semispan

Ambient Temperature Ratio

Winglet Cant Angle

WIND TUNNEL TESTS AND DATA CORRECTIONS

The airplane performance wind tunnel tests were accomplished by NASA at

their Langley facilities. All tests were conducted in the NASA-Langley 8-foot

Transonic Pressure Tunnel except for a limited amount of low-speed flaps-down

testing in the NASA-Langley 7-foot x 10-foot High Speed Tunnel to obtain high

angles of sideslip. Three different wind tunnel models were used during the

NASA-Langley tests. Figure 1 pictures the 0.035 scale rigid full wing span

model. The wing for this model was built in a jig position. A photograph of

the 0.035 scale model used for the flaps-down wind tunnel tests is shown in

figure 2. The model is a rigid full wing span model with brackets for flap

deflections of 30 degrees and 50 degrees and outboard aileron deflections.

Figure 3 presents the 0.07 scale half model. This particular photograph shows

the early upper and lower winglet configuration. The wing of this model had

internal structural material removed so that the wing tip would deflect to an

approximate full scale cruise position in the wind tunnel. Figure 4 shows the

0.07 scale wind tunnel model static pressure port span locations. On the 0.035

scale models the wing pressures were at the same locations and the winglet

static pressure port span locations were at winglet stations 1.01 and 1.05. A

summary of the KC-135A winglet wind tunnel test conducted at NASA-Langley is

shown in table I. The test number, model configuration, conditions and type of

data recorded are presented.

The "flexible" wing wind tunnel half model used during the NASA-Langley

test 727 had a clipped wing tip, the fuselage was not connected to the balance

and the wing was built to deflect to a cruise flight position. The data from

this test were based on the exposed trapezoidal wing area of the model. The
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winglet on and off test data with the clipped wing, based on the exposed
trapezoidal area, were corrected to the KC-135 wing area of 2,433 square feet.

The incremental drag, due to the winglets, was obtained by taking the difference

between the wing area-corrected clipped wing drag polars (winglet on and off)

and then adjusting the drag increment to the correct lift by accounting for the

fuselage lift carryover. To determine the fuselage lift contribution, the

rigid and elastic effects for the KC-135A lift curves were used (reference i0)

with the wind tunnel flexible model lift data. The drag increment was then cor-

rected for trim drag and Reynolds number. The corrected incremental drag ver-

sus lift coefficient is shown in figure 5 for M = 0.78. The data points are

the incremental drag from the wind tunnel corrected for wing area. The body

lift correction was then applied and the combined trim drag and Reynolds number

corrections were added. The resulting final corrections to the NASA test 727

data is shown by the dashed line. At M = 0.78 and C L = 0.45 the drag increment

was -17.5 drag counts.

The full span model used during the NASA-Langley test 754 had a rigid wing

in the jig position and the winglet was at 12 degrees cant angle. A potential

flow analysis was accomplished using wing and winglet geometry corrected for

aeroelastic effects to determine the effect of wing aeroelastic effects on the

winglet drag increment. The correction was for the cruise condition and

amounted to 2.9 degrees additional wing dihedral and -2.9 degrees additional

wing twist. The "flexible" wing solution reduced the winglet drag benefit com-

pared to the rigid wing in the jig position. At a lift coefficient of 0.45 the

winglet drag benefit was about 2.2 drag counts less for the "flexible" wing

than the jig position wing.

From the test 727 cant angle variation there was no discernible difference

in winglet drag increment between 12 and 15 degrees cant angles. The correc-

tions for trim drag and Reynolds number were made in the same manner outlined

for test 727. The winglet drag increment at M = 0.78 for the NASA test 754

data is shown in figure 6. Again, the test points are noted by the symbols and

the dashed line has the combined trim drag and Reynolds number correction noted

on the plot.

The KC-135A winglet performance improvements predicted from the wind tun-

nel data are summarized in table 2. The corrected winglet drag increments

obtained from both NASA wind tunnel tests 727 and 754 were added to the basic

KC-135A drag polar and the cruise conditions were reoptimized for both sets of

data. The performance data shown are an average from both data sets. The

values shown are for a flight speed at 99 percent maximum range and the noted

corrections.

SURFACE PRESSURE COMPARISONS AND ANALYSIS

During the winglet flight tests, chordwise static pressures were measured

at four wing and three winglet span locations, as shown in figure 4. These

were the same locations where pressures were obtained during the 0.07 scale

half model wind tunnel tests.
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Comparisonsof the flight test and wind tunnel measuredpressures for a
typical cruise condition are shownin figures 7 and 8 for the wing and winglet,
respectively. As can be seen in figure 7 the wing pressure comparison shows
good agreement. On the flight test airplane the three inboard rows of wing
pressures were measuredusing pressure belts. The outboard row of wing pres-
sures were especially installed flush static ports. At the 0.92 wing semispan
station the flight test pressures indicate someirregularities in the pressure
belt contour. At the outboard wing station the flight test-measured pressure,
at about 82 percent chord, indicates an ambient pressure. This was attributed
to a bad pressure tap and was consistent throughout the flight test for all the
flight test-measured pressures.

Figure 8 is a comparison of the flight test and wind tunnel measuredpres-
sures on the winglet for the sametypical cruise condition. The overall agree-
ment is good. However, a close look at the comparison reveals somesubtle
differences. First, the three flight test-measured pressures at the winglet
tip on the outboard winglet surface at chord stations of about 0.65, 0.75 and
0.87 are bad pressure taps. Next, note the slight local velocity increase mea-
sured in flight, beginning at about 60 percent chord for the winglet midspan
and tip locations. This effect on the flight test winglet pressures was due to
the winglet pillowing causing an irregular contour change in the winglet air-
foil shape at these locations. The effect of the winglet pillowing on the
flight measuredpressures actually begins at about 25 percent chord and a close
look indicates an effect at all three span locations.

An inflight photograph of the inboard winglet surface is shownin figure 9,
showing the surface contour pillowing whenthe winglet experiences inflight
loads. The surface contour bulges inboard between the winglet ribs and spars
due to the compressive stresses in the skin and the inboard suction of the
local negative pressures.

The forward winglet spar is located at 15 percent chord and no pillowing
effect on surface contour was noticed in flight along the leading edge. How-
ever, the inboard winglet root pressure comparison in figure 8 indicates a sub-
stantial difference between the flight test and wind tunnel measuredpressures
at the leading edge. At this Machnumberboth sets of data show a weak shock
at about 25 or 30 percent chord. However, the flight test pressures do not
peak to the samelevels as the wind tunnel data. A close look at the flight
test-measured pressures in this area at other Machnumbersrevealed that as
soon as the local flow went supersonic the leading edge pressure peak was
affected.

The lowest Machnumberthat pressure data was obtained was 0.468 for the
15°/-2 ° winglet position. During the flight test program the first winglet
position tested was the 15°/-2 ° position in order to clear the airplane in this
configuration first for flutter. During these flights a limited amount of
pressure data was taken to check out the pressure instrumentation which
included a condition at a Machn_nber of 0.468 and an angle of attack of
2.0 degrees. To aid in determining if the winglet root leading pressure peak
loss was associated with a local sonic flow condition, these flight test pres-
sures were comparedto the wind tunnel pressures. The lowest Machnumber at
which pressure data was recorded in the wind tunnel was 0.70, and only for the
15°/-4 ° winglet position. A comparison of these pressures is shownin fig-
ure i0. Since the winglet positions do not have the sameincidence angle, data
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at three angles of attack are shownfor the wind tunnel data in order to
comparethe general shape of the leading edge pressures. This comparison

showed that at subcritical Mach numbers the winglet root leading edge was load-

ing the way it should. This indicated that the flight test winglet root lead-

ing edge pressure peak loss was not associated with any difference in airfoil

contour between flight and wind tunnel test, but rather with a local supersonic

flow condition.

In an attempt to understand the differences in the leading edge pressures

and to further substantiate the effect of the winglet pillowing, a comprehen-

sive two-dimensional transonic analysis was conducted on the winglet streamwise

root airfoil section. The primary tool in the analysis was the Bauer-

Garabedian-Korn-Jameson 2-D transonic viscid/inviscid analysis code (refer"

ences II and 12). The first step in the analysis was to analyze the basic

airfoil, figure Ii. This figure shows that the airfoil has good characteris-

tics that are typical of supercritical airfoils. The leading edge pressures,

in general, also match the winglet root, low Mach number wind tunnel pressures

in figure 8. Since the airfoil ordinates used in the analysis were the same as

the ordinates used in lofting, no lofting problem was suspected. However,

photographs of the winglets in flight (figure 9) reveal that there was a pil-

lowing effect on the winglets. The rib and spar construction of the flight

test article allow bulging out of the unsupported skin panels. This pillowing

extends from the forward spar to the aft spar and from the aft spar to the

trailing edge winglet structure between the ribs.

The skin pillowing was estimated to bulge approximately one-quarter inch

on the 65 inch chord, or 0.38 percent chord at the winglet root station. The

model airfoil geometry was modified to simulate the presence of this pillowing.

The modified airfoil geometry was again analyzed and the results are shown in

figure 12. It should be pointed out that because of the sweep of the winglet,

Mnormal = 0.64 is approximately equal to Mfreestream = 0.78. Comparing the aft

50 percent of these pressures to the aft 50 percent of the flight test pres-

sures in figure 8 shows a very close resemblance in shapes. One cannot expect

the magnitudes to match because of the three-dimensional losses from the analy-

sis; however, the shapes of the curves should be similar.

The comparisons of the aft portions of the pressures are very similar, but

the leading edge pressures do not indicate a leading edge pressure peak loss

due to the skin pillowing. A close examination of the flight test photographs

and conferences with the structural engineers indicated that the pillowing

between the spars may not have been modeled correctly. The way the skin panel

is mounted to the ribs and spar would not allow the pillowing to extend over as

large a portion of the chord as originally assumed. Remodeling the airfoil, as

shown at the bottom of figure 13, yielded the corresponding changes in the

pressures. At slightly higher Mach numbers, the pressures seem to hold a peak

at about 33 percent chord similar to the flight test pressures. However, the

leading edge pressure peak was not appreciably affected.

Since the leading edge pressures were experiencing higher peaks in the

analysis than in the flight test at cruise Mach numbers and the flight test

pressures match wind tunnel pressures at low subcritical Mach numbers, it was

concluded that a small region of separation exists on the winglet leading edge

and grows with Mach number on the flight test article. The reason the separa-

tion did not show in the wind tunnel data may have been because the wind tunnel

150



model had a trip strip at 5 percent chord. Although the grit size was small,

No. 22, it was still 3 to 4 times greater than the displacement thickness of a

laminar boundary layer at this point. The grit in this case may have been

doing more than forcing a transition from laminar to turbulent flow in the

boundary layer. The grit may have been acting like a row of very small vortex

generators which were injecting energy into the boundary layer, preventing

separation.

The next step in the investigation was to define what effect the differ-

ences between flight test and wind tunnel measured winglet pressures had on

winglet pressure drag. To do this, the winglet flight test and wind tunnel

pressure data were transformed to suction and drag loops along the winglet span

using the winglet incidence angle. This was accomplished for all Mach numbers

and angles of attack for which wind tunnel and flight test pressure data

existed. A typical comparison between flight test and wind tunnel data at

cruise conditions is shown in figures 14 through 16 for the three winglet sta-

tions. Note the relatively large difference in the suction loop area at the

winglet root station due to the flight test leading edge pressure peak loss.

A chordwise and spanwise integration on the winglet of these data yielded

the incremental winglet pressure drag data shown in figure 17. Note that the

drag data are shown plotted against the section normal force at the outboard

wing station instead of the usual total airplane lift coefficient. This was

done to compensate for any differences in aeroelastic twist at the wing tip

between the wind tunnel model and the flight test airplane. The relationship

between airplane lift coefficient and wing tip normal force coefficient for the

flight test airplane is shown in figure 18.

Referring back to the incremental pressure drag plot in figure 17 indi-

cates that at typical cruise conditions the difference between the flight test

and wind tunnel measured drag data would be about 4 drag counts, which is about

1.5 to 2 percent when transformed to a cruise fuel mileage benefit. This dif-

ference reveals the importance of the aerodynamic pressure loading on the wing-

let in order to obtain the expected winglet performance benefit.

In order to obtain a feel for the amount of the drag difference obtained

between flight test and wind tunnel data that can be attributed to the winglet

root leading edge suction loss and the winglet pillowing effect, the winglet

root suction/drag loop for the flight test was assumed to be exactly equal to

the wind tunnel data. Performing a similar integration over the winglet

revealed the drag differences shown in figure 19. The drag differences shown

here between the flight test and wind tunnel data are approximately the differ-

ences that can be attributed to the winglet pillowing effect. About one-third

of the total difference shown in figure 17 can be attributed to winglet pillow-

ing and two-thirds to the winglet root leading edge suction loss obtained in

flight.

COMPARISONS OF WIND TUNNEL AND THEORETICAL

PREDICTION TO FLIGHT TEST DATA

One of the objectives of the KC-135 Winglet Flight Research and Demonstra-

tion Program was to obtain experimental flight test data to verify the theoret-

ical and wind tunnel winglet performance prediction methods.

151



Theoretical surface pressures and drag increments due to the winglets were
comparedto wind tunnel and flight test data for selected conditions. The fol-

lowing discussion presents the results of these comparisons.

A comparison of theoretical potential flow, wind tunnel and flight test

pressure distributions on the wing tip and winglet are presented in figure 20.

The comparison is at a Mach number of 0.70. The overall comparison is good.

The potential flow wing geometry had an aeroelastic twist distribution repre-

sentative of typical ig cruise conditions. Also note in figure 20 the loss of

the leading edge pressure peak at the winglet root obtained from the flight

test data.

Integrating the wind tunnel and flight test pressure data to obtain the

section normal force results in the typical comparison shown in figure 21. The

15 ° cant/-4 ° incidence angle data compared well. At the winglet midspan and

tip positions the flight test data may be slightly lower compared to the wind

tunnel data. The 15 ° cant/-2 ° incidence data Show the winglet carrying more

load as expected.

Flight test incremental drag results are compared to wind tunnel and theo-

retical predicted drag increments in figures 22 through 24. The flight test

data shown in the figures have the pressure drag increment correction included.

The wind tunnel drag increments have been corrected for Reynolds number and

trim drag.

The data shown in figure 20 compares the test data to a predicted theoret-

ical drag increment at a Mach number of 0.70. The theoretical drag increment

was obtained using the same potential flow geometry model with aeroelastic

twist that was discussed before. The wing and winglet potential flow span

loading solution was again used as input to a Trefftz plane analysis computer

program to compute the induced drag. The induced drag was then corrected for

skin friction and trim drag. As can be seen in figure 22, the comparison was

good between theory, wind tunnel and flight test. Since the theoretical poten-

tial flow method was a subcritical flow method, only a comparison at a Mach

nim_ber of 0.70 is shown. At the higher Mach numbers shock waves begin to

appear on the surface and the method is no longer valid.

Wind tunnel predicted and flight test incremental drag comparisons at

higher Maeh numbers are shown in figures 23 and 24. In each case the compari-

son was good except at a Mach n_aber of 0.82. The flight test drag increment

shows less improvement than predicted from wind tunnel data at this Mach num-

ber. This was attributed to the winglet root leading edge pressure peak loss

in flight and the surface pillowing problems becoming more aggravated at this

higher Mach n_ber, as previously discussed.

The KC-135A performance improvements based on these incremental drag data

are shown in table 3. The winglet drag increment was added to the basic

KC-135A Flight Manual drag polar and cruise conditions were reoptimized. The

wind tunnel-predicted fuel mileage improvement value previous to the flight

test was 6.3 percent (table 2) and, using the flight test obtained drag incre-

ment, the fuel mileage improvement was 6.5 percent. These percentages were

obtained by ratioing the winglet on and off fuel mileage at the optimum W/_ of

each configuration.
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Figure 25 presents the performance benefit for winglets obtained from
flight test fuel mileage and drag data compared to the wind tunnel predicted

improvement at M = 0.78. The percent improvement shown has been corrected to

account for the winglet surface pressure discrepancies. Good agreement was

obtained between the corrected flight test data and the corrected full model

wind tunnel data.

Buffet boundaries were established during the flight test program using

wing tip mounted accelerometer data. Data were obtained for the winglets on

configurations as well as for the baseline configuration, as shown in figure 26.

The buffet boundary data obtained for the baseline configuration was in good

agreement with the previously established data. The buffet data for the

15 ° cant/-4 ° incidence configuration shows a slight improvement over the base-

line. The 15 ° cant/-2 ° incidence configuration showed a slight deterioration

to the baseline configuration again indicating that the additional winglet

loading was causing an earlier flow separation. The 0 ° cant/-4 ° incidence con-

figuration exhibited buffet characteristics similar to the 15 ° cant/-2 ° inci-

dence configuration. The decrease in buffet boundary for the 0 ° cant/-4 ° inci-

dence configuration is in agreement with the performance data that showed a

lower than predicted performance increase, possibly due to flow separation

between the wing tip and winglet root.

CONCLUSIONS

Results of the KC-135 winglet flight test have verified that the perfor-

mance improvement can be predicted using conventional analytic and wind tunnel

testing techniques. The data show that winglet retrofit would provide a six

percent performance improvement for the KC-135 at the optimum cruise condition.

Particular attention should be paid to the design of the wing tip and

winglet intersection. Since the drag differences obtained between flight test

and wind tunnel data were significant, the implications for a production wing-

let design are important. First a production winglet should be constructed so

that no winglet pillowing could occur, possibly by using composite material or

reinforced honeycomb techniques. Second, a production winglet should be

designed so that the highly sensitive winglet root leading edge area does not

experience a peak pressure loss during flight conditions that result in

locally supersonic flow in this area. A row of vortex generators to prevent a

separation bubble or a winglet root leading edge fairing to prevent local

supersonic flow conditions are two possible solutions.
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TABLE 2. -- KC-135A WINGLET PERFORMANCE BENEFITS PREDICTED

FROM WIND TUNNEL DATA

0 Flight speed for 99% maxim_ range

• Climb cruise corrected

• 5% service tolerance (fuel flow increase

per MIL-C-5011B)

• Bleed and power exbraction included (1.25%)

KC-135A (basic)

KC-135A with

winglets

Percent change

relative to

KC-135A

w/6**
Mach L/D*

(Ibs)

882,300 0.79 17.4

933,000 0.79 18.4

5.7%

M (L/D) *

13.8

14.6

5.8%

TSFC*/Je
(ib/hr-lb)

1.1151

1.1106

0.4%

Fuel*

Mileage

(nm/ib)

0. 0407

0.0433

6.3%

Range**

Factor

(nm)

8O84

8597

6.3%

*200,000 lbs gross weight

**Average over gross weight range (includes owe change for winglets)
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TABLE3. -- KC-135AWINGLETPERFORMANCEBENEFITSPREDICTED

FROMFLIGHTTESTDATA

• Flight speed for 99%maximumrange
• Climb cruise corrected

• 5% service tolerance (fuel flow increase

per MIL-C-5011B)

• Bleed and power extraction included (1.25%)

KC-135A (basic)

KC-135A with

winglets

Percent change

relative to

KC-135A

W/6 **
Mach L/D* M (L/D) *

(ibs)

882,300 0.79 17.4 13.8

942,000 0.79 18.43 14.63

5.9% 6.0%

TSFC*/ e
(ib/hr-lb)

1.1151

1.1114

0.33%

Fuel*

Mileage

(nm/ib)

0. 0407

0.04335

6.5%

Range**

Factor

(nm)

8084

8611

6.5%

*200,000 lbs gross weight

**Average over gross weight range (includes owe change for winglets)
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KC-135A WINGLET FLIGHT FLUTTER PROGRAM

Michael W. Kehoe

NASA Dryden Flight Research Center

SUMMARY

This paper discusses the evaluation techniques, results and conclusions

for the flight flutter testing conducted on a KC-135A airplane configured

with and without winglets. Test results are presented for the critical sym-

metric and antisymmetric modes for a fuel distribution that consisted of

i0,000 pounds in each wing main tank and empty reserve tanks. The results

indicated that a lightly damped oscillation was experienced for a winglet Con-

figuration of 0 ° cant and -4 ° incidence. The effects of cant and incidence

angle variation on the critical modes are also discussed. Lightly damped

oscillations were not encountered for any other winglet cant and incidence

angles tested.

INTRODUCTION

A KC-135A aircraft was modified with winglets for use in a flight research

and demonstration program to evaluate the effects of winglets on the perfor-

mance of the airplane. Due to the addition of the winglet and the structural

modifications necessary for the attachment to the wing, flight flutter testing

of the airplane was required. The methods used to clear the KC-135A with wing-

lets for flutter were:

i. A low speed wind tunnel flutter model test (reference I).

2. A ground vibration test (GVT) of a cantilevered outer wing panel with

the winglet attached (reference 2).

3. A predictive flutter analysis (reference 3).

4. A flight flutter test (reference 4).

The concept used for this program was to compare flight test data for the

airplane with winglets off (baseline) versus winglets on to determine the

effects of winglets on the basic airplane. The winglets on data were comprised

of data for different winglet cant and incident angle configurations.

The objectives of the program were:

i. To provide a flutter clearance for the KC-135A winglet airplane to

allow performance and loads testing on the baseline and selected wing-

let configurations.

2. To obtain frequency and damping information for critical structural

modes of vibration.
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ABBREVIATIONS

ALT

CONF

F

g

G

GVT

KCAS

KEAS

LE

L/H

R/H

S/N

TE

V D

Altitude

Configuration

Frequency

Damping Coefficient

Modal Damping same as g

Ground Vibration Test

Knots Calibrated Airspeed

Knots Equivalent Airspeed

Leading Edge

Left Hand

Right Hand

Serial Number

Trailing Edge

Limit Dive Speed

WINGLET AND FUEL CONFIGURATIONS TESTED

Flutter testing of the KC-135A winglet airplane was originally planned to

be accomplished at an altitude of 21,500 feet for the winglet off (baseline)

configuration and for the following winglet cant and incidence configurations:

• 15 ° cant/-2 ° incidence.

• 15 ° cant/-6 ° incidence.

• 0 ° cant/-2 ° incidence.

• 0 ° cant/-6 ° incidence.

• USAF selected optimum (later determined to be 15 ° cant/-4 ° incidence).

The USAF selected optimum winglet configuration was also to be tested at

an altitude of 35,000 feet. Flight testing these configurations would clear all

other winglet configurations for flutter.

The flutter speed was dependent on the airplane fuel distribution. The

lowest flutter speed for the critical symmetric mode was predicted by analysis

and exhibited in the wind tunnel to occur when the wing fuel tanks were nearly

empty (light wing fuel loading). The critical antisymmetric mode was predicted

to yield the lowest flutter speed with the wing tanks full (heavy wing fuel

loading). In order to verify wind tunnel test data and the predictive flutter
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EXCITATION

The structure was excited at each test point by pilot induced control
surface pulses. The excitation consisted of nose-up and nose-downelevator
pulses, left and right rudder pulses and left and right aileron pulses for all
straight and level test points. For test points that required dives, only a
nose-up elevator pulse, a left rudder pulse and left aileron pulse were
accomplished.

Randomatmospheric turbulence was used to excite the structural modesof
vibration which were not excited by control surface pulses. Typically,
two minutes of randomdata were collected at the test points of interest.

TESTRESULTS

Eight symmetric and five antisymmetric modeswere tracked during the pro-
gram for each winglet configuration tested. The velocity/frequency and
velocity/damping plots for each winglet configuration tested are contained in

reference 4.

Significant skin wrinkling was present on the winglets during all flights.

The depth of the wrinkles appeared to increase with an increase in dynamic

pressure. A review of pressure distributions and modal frequency data indi-

cated that the winglet skin wrinkling did not have a significant effect on the

flutter characteristics of the winglet.

The damping values calculated for autopilot-on test points were similar to

data calculated for autopilot-off test points. The autopilot-on data did not

reveal any significant changes in structural damping for all winglet configura-

tions tested.

The winglet structural modes were monitored during data analysis. The

pilot induced pulses did not excite the winglet modes because of the low fre-

quency content of the pulses. Random data were acquired at selected test

points to analyze the winglets modes. The damping levels of the winglet were

satisfactory from a flutter standpoint.

SUMMARY OF TEST RESULTS FOR ELEVATOR EXCITATION

The critical mode excited by elevator pulses was approximately 4.5 Hz.

The flight test data indicated the 4.5 Hz mode consistently exhibited a flat

damping trend with damping values generally lower than other modes excited by

elevator pulses. Flight test results also indicated the damping to be the

lowest for this mode in fuel configuration 5 (2,500 pounds in each wing main

tank, reserve tanks empty). The response of this mode was most clearly indi-

cated by the wing tip longitudinal accelerometer.

Predictive flutter analysis indicated that a 4.6 Hz symmetric mode

exhibited the lowest flutter speed for a fuel configuration which included

empty body and center wing tanks, empty outboard main and reserve tanks, and

inboard main tanks 46 percent full. The analysis predicted a 35 percent
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margin of safety. Wind tunnel testing indicated the frequency of the critical
symmetric modeto be 4.5 to 4.8 Hz for the samefuel configuration.

A comparison of the frequency and dampingtrends between the baseline and
winglets on configurations is presented in figures 5 and 6 for the 4.5 Hz mode.
The fuel loading was configuration 4. The data points were faired so that the

general data trends can be followed. The baseline frequency (4.9 Hz) was

greater than the frequencies for the winglets on configurations (_4.5 Hz).

The comparison of the cant angle variation results (figure 5) yielded:

i. The baseline configuration exhibited the highest damping values.

2. As the cant angle was decreased from 15 ° to 0 ° , the damping increased.

3. The damping trends were fairly flat.

4. The winglets on frequency trends exhibited a small increase in fre-

quency as airspeed was increased.

The comparison of the incidence angle variation (figure 6) results

yielded:

i.

2.

3.

4.

The baseline configuration exhibited the highest damping values.

As the incidence angle was increased from -2 ° to -4 ° , the damping
decreased.

The damping trends were fairly flat.

The winglets on frequency trends revealed a small increase in fre-

quency as airspeed was increased.

SUMMARY OF TEST RESULTS FOR AILERON AND RUDDER EXCITATION

The critical Node excited by aileron and rudder pulses was a 3.0 Hz anti-

symmetric mode. A damping of g = 0.015 was obtained for this mode at 370 KEAS

with fuel configuration 4 (i0,000 pounds in each wing main tank, empty

reserves) for the 0 ° cant/-4 ° incidence winglet configuration. Wind tunnel

test data indicated that a 2.8 Hz mode was the critical antisymmetric mode.

However, the critical wind tunnel fuel configuration was with wing main and

reserve fuel tanks full.

A 4.3 Hz antisymmetric mode was analytically predicted to have the lowest

flutter speed. The fuel configuration in the analysis was:

Tank Percent Full

Forward Body 90.2

Center Wing 47.3

Aft Body I00

Upper Deck 42.8

Wing Inboard Main i00

Wing Outboard Main I00

Reserve i00
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The predicted flutter speed margin of safety for this antisymmetric modewas
greater than the margin for the critical symmetric mode (4.6 Hz).

A comparison of the frequency and damping trends between the baseline and
winglets on configurations is presented in figures 7 and 8 for the 3.0 Hz mode.
The fuel loading was configuration 4. The frequency of the baseline configura-
tion was lower than the frequency of the winglets on configurations in spite of
the increased wing tip mass. The difference is most likely due to the aero-
dynamic effects of the winglets on the wing structure.

A comparison of the cant angle variation results (figure 7) yielded:

i. At airspeeds below 330 KEAS,the damping level was about equal for the
baseline and winglets on configurations.

2. At airspeeds above 330 KEAS,the baseline configuration had the highest
level of damping.

3. At airspeeds above 360 KEAS,the damping decreased as the cant angle
decreased from 15° to 0°. Testing was terminated at 370 KEASfor the
0° cant configuration.

4. The baseline and the 15° cant configuration frequency trends exhibited
an increase in frequency as the airspeed was increased above 340 KEAS.

5. The 0° cant configuration exhibited a fairly flat frequency trend.

A comparison of the incidence angle variation (figure 8) revealed:

i. At airspeeds above 360 KEAS,the baseline configuration exhibited the
highest damping.

2. The -2° and -4 ° incidence angle data exhibited similar damping trends.
3. At airspeeds above 340 KEAS, the frequency trends for the baseline and

winglets on configurations increased in frequency as airspeed was
increased.

Testing was terminated at 370 KEASwith fuel configuration 4 due to a
lightly damped3.0 Hz antisymmetric oscillation in the 0° cant/-4 ° incidence

winglet configuration. The damping exhibited at termination was _ = 0.015.

The 3.0 Hz mode was best excited by aileron pulses. The time history traces of

several accelerometers responding to an aileron pulse at 370 KEAS are presented

in figure 9. The inflight mode shape of this 3.0 Hz oscillation is presented

in table 3. The frequency and damping trends for a 2.6 Hz mode and 3.0 Hz mode

are presented in figure i0. The data exhibited a constant increase in fre-

quency for the 2.6 Hz mode while the 3.0 Hz mode frequency trend remained flat.

Both modes exhibited wing bending and wing torsion at all airspeeds. It

appeared that the coalescence of these two modes was the cause of the oscilla-

tion for this flight configuration. The coalescence of the 2.6 Hz and 3.0 Hz

modes did not occur in other winglet configurations that were flight flutter

tested. The damping trends for both modes exhibit a constant decrease in damp-

ing starting at 330 KEAS. The modes could no longer be separated at airspeeds

above 355 KEAS. There were no adverse damping trends exhibited for the 0 ° cant/

-4 ° incidence winglet configuration with fuel configuration 6. Testing was

terminated at 382 KEAS due to the onset of Mach buffet. It was thought that

keeping the airplane out of buffet would help reduce the number of fuel leaks
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The results revealed satisfactory damping for all winglet configurations

tested except the 0 ° cant/-4 ° incidence configuration. Testing was terminated

in this winglet configuration at 370 KEAS at an altitude of 21,500 feet due to

a lightly damped (g = 0.015), 3.0 Hz antisymmetric oscillation. The fuel dis-

tribution at this condition was I0,000 pounds in each wing main tank and empty

wing reserve tanks.

As the cant angle was decreased from 15 ° to 0 °, the damping of the criti-

cal symmetric mode increased. As the incidence angle was increased from -2 ° to

-4 ° , the damping decreased. The critical symmetric mode exhibited the highest

damping in the baseline configuration.

The critical antisymmetric mode exhibited the highest damping in the base-

line configuration. At airspeeds above 330 KEAS, the damping level decreased

with winglets installed on the airplane regardless of cant or incidence angle

configuration. The -2 ° and -4 ° incidence angle data exhibited similar damping

trends. At airspeeds above 360 KEAS, the damping decreased as the cant angle

decreased from 15 ° to 0 °.
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TABLEi. - PLANNEDTESTFUELCONFIGURATIONS

Fuel
Configuration Number

1

2
3

4

5

6

Center Wing
and Body Fuel

Note 1

Note 3

Note 2

Note 2

Note 2
Note 2

Wing Fuel - PoundsPer Tank

Main Tanks

Full

Full

i0,000

i0,000

2,500
Full

Reserves

Full

Full

1,300

0

0
Full

Notes

i. As required to complete condition with minimumbody fuel.
2. As required to accomplish testing.

3. As required to maintain a gross weight above 230,000 pounds at end
of test condition.

179



TABLE 2. - AIRCRAFT FLUTTER INSTRUMENTATION

Item No. Parameter Identification

1

2

3

4

5

6

7

8

9

i0

Ii

12

13

14

15

16

17

18

19

2O

21

22

23

R/H

R/H

R/H

R/H

R/H

R/H

L/H

L/H

L/H

R/H

R/H

Aft

Aft

Wing Tip LE Normal Acceleration

Wing Tip TE Normal Acceleration

Wing Tip LE Longitudinal Acceleration

Winglet LE Normal Acceleration

Winglet TE Normal Acceleration

Winglet LE Longitudinal Acceleration

Wing Tip LE Normal Acceleration

Winglet LE Normal Acceleration

Winglet LE Longitudinal Acceleration

Otbd Nacelle Normal Acceleration

Otbd Nacelle Lateral Acceleration

Body Normal Acceleration

Body Lateral Acceleration

R/H Horizontal Stabilizer Acceleration

Vertical Fin Lateral Acceleration

L/H Inbd Aileron Position

R/H Inbd Aileron Position

L/H Otbd Aileron Position

R/H Otbd Aileron Position

L/H Elevator Position

R/H Elevator Position

Rudder Position

Lower Wing Skin Panel Acceleration

See Figure 4 for locations
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